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BOOK I. TRANSLATIONS.

CHAPTER I. STEPS.

INTKODUCTION.

Just as Geometry teaches us about the sizes and shapes
and distances of bodies, and about the relations which hold
good between them, so Dynamic teaches us about the

changes which take place in those distances, sizes, and
shapes (which changes are called motions), the relations

which hold good between different motions, and the
circumstances under which motions take place.

Motions are generally very complicated. To fix the

ideas, consider the case of a man sitting in one corner of

a railway carriage, who gets up and moves to the opposite

corner. He has gone from one place to another ; he has
turned round ; he has continually changed in shape, and
many of his muscles have changed in size during the

process.

To avoid this complication we deal with the simplest

motions first, and gradually go on to consider the more
complex ones. In the first place we postpone the con-

sideration of changes in size and shape by treating only

of those motions in which there are no such changes. A
body which does not change its size or shape during the

time considered is called a rigid body.

The motion of rigid bodies is of two kinds; change
of place, or translation, and change of direction or aspect,

which is called rotation. In a motion of pure translation,

every straight line in the body remains parallel to its

original position j for if it did not^ it would turn round,

C. 1



2 DYNAMIC.

and there would be a motion of rotation mixed up with
the motion of translation. By a straight line in the body
we do not mean merely a straight line indicated by the

shape or marked upon the surface of the body ; thus if

a box have a movement of translation, not only will its

edges remain parallel to their original positions, but the

same will be true of every straight line which we can
conceive to be drawn joining any two points of the box.

When a body has a motion of translation it is found
that every point of it moves in the same way; so that to

describe the motion of the whole body it is sufficient to

describe that of one point. When a body is so small that

there is no need to take account of the differences in

position and motion of its different parts, the body is

called a particle. Thus the only motion of a particle

that we take account of is the motion of translation of

any point in it.

A motion of translation mixed up with a motion of

rotation is like that of a corkscrew entering into a cork,

and is called a twist.

Bodies which change their size or shape are called

elastic bodies. Changes in size or shape are called strains.

The science which teaches how to describe motion
accurately, and how to compound different motions to-

gether, is called Kinematic {KLvrjfia, motion). We may
conveniently reckon three branches of it, namely,

jPoints or particles (Translations).

Kinematic of -^Rigid Bodies (Rotations and Twists).

(Elastic Bodies (Strains).

It is found that the change of motion of any body
depends partly on the position of distant bodies and
partly on the strain of contiguous bodies. Considered

as so depending, the rate of change of motion is called

force; and the law just stated, expressing the circum-

stances under which motions change, is called the law of
force.

The science -which teaches how to calculate motions

•in accordance with the law of force is called Dynamic
(8vva/xL<;, force). It is divided into two parts : Static,

which treats of those circumstances under which rest or

nuU motion is possible, and Kinetic, which treats of cir-
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cumstances under which actual motion always takes place.

Properly speaking, Static is a particular case of Kinetic
which it has been convenient to consider separately.

When change of motion depends upon the position of

distant bodies, it is also called attraction or repulsion;

when it depends upon the strain of contiguous bodies,

it is also called stress.

Those elastic bodies whose shape may change without
stress (i.e., without simultaneous change of motion in

adjacent bodies) are called ^m'o^s; all others are called

solids. There are no known bodies: whose size can change
without stress.

The part of Dynamic which relates to fluid bodies is

sometimes treated separately, under the name of Hydro-
dynamic (Hydrostatic and Hydrokinetio).

That part which relates to the changes of shape of

solid bodies, considered in relation to the law of force, is

called the theory of Elasticity.

ON STEPS.

When a body has a motion of translation, all the

points of it move along equal and similar patJis, For
let a and b be two points of the

body, and let a move along the
^--rx

path aa'a", and b along the path o-sii5!li.J\^^^^^a."

bb'b", so that when a is at a', 6 is / / /

at b', and when a is at a", b is at b", / jL /

Then, by the definition of a trans- jj-^^^^----^^/,,

lation, the straight lines ah, a'b'

and a!'b" are equal and parallel. Consequently aa! is

equal and parallel to hh', and aa' to bb". If therefore

the path aa'a!' be moved so that a comes to h, and the

lines acb, ad', are kept parallel to their original positions,

the points a, a!' must come to b', b" respectively. But
the point a' is any point on the path of a. Therefore

every point on the path of a comes to coincide with the

corresponding point on the path of b, or, which is the

same thing, the path of a is equal and similar to the path

of b. That is, the paths of any two points are equal and
similar.

1—2
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Hence it is sufficient, in describing the translation of a

rigid body, to describe the motion of any one point of

the body. But the former is really simpler than the

latter ; for the point starts from a definite place, which
must be specified if its motion is fully described; but

the fixing of this starting-point is unnecessary, as we
have seen, when the motion of a point is only used to

describe that of a rigid body.

At present we shall attend only to the change of
position which a body undergoes between the beginning

and end of the time considered, without troubling our-

selves about what has taken place in the interval. That
is, we shall pay attention to the fact that a has got to a
and b to h', without enquiring about the paths aa and bb',

or about the time occupied in the transfer, A change
of position effected by a motion of translation will be
called a step.

The step of the point a from a to a' will be con-

veniently denoted by the symbol aa; and we may re-

present it graphically by the straight line aa', pro-

vided we remember that the transfer takes place along

any path whatever, and not necessarily along that straight

line. This being so, the lines aa' and bb' will represent

the same step of a rigid body if they are equal in length

and in the same direction; that is, not merely parallel,

but drawn in the same sense on two parallel straight lines.

Thus a step of a rigid body is adequately represented

by a line of given length and given direction drawn
anywhere.

We shall say that the step aa' is equivalent to the

step bb' ; which may also be written shortly thus: aa — bb'.

Here the symbol =, which is commonly shorthand for

equal, is used in the sense of equivalent. It means more
than that the length aa is equal to the length hb', namely,
that the direction aa' is also the same as the direc-

tion bb'.

COMPOSITION OF STEPS. GEOMETRY.

If, while a railway carriage moves along the line from
the position 1 to the position 2, a man who was sitting

on the seat a moves across to the seat b, the final position-
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of the man will be the same as the final position of h,

namely, b'. The man is said to have made the step ab

—__g

relative to the carriage ; and his actual step from a to b'

is said to be compounded of the step of the carriage, hb\

and of this step relative to the carriage. Thus the step

ab' is compounded of the steps ab and hh'. In this case

ab and bb' are called the components and ab' is called the

resultant.

Since aa' is equivalent to bb', we may equally speak
of ab' as the resultant of aa' and ab. Thus we get
two different rules for finding the resultant of two given
steps :

—

1. Let the straight lines representing the steps be
so placed that the end of the first is the beginning of

the second ; then the step from the beginning of the

first to the end of the second is the resultant {ab' resul-

tant of ab and bb').

2. Let the straight lines repre-

senting the steps be so placed that

they have the same beginning, and
let a parallelogram be constructed

of which they are two sides ; then

the resultant will be represented by that diagonal of

the parallelogram which passes through the common
beginning {ab' resultant of aa and ab).

In the first rule we speak of the components as oc-

curring in a certain order, first and second, viz., the step

relative to the carriage and the step of the carriage ; but

in the second rule there is no such distinction. It appears

from this that the two steps might be interchanged with-

out affecting the result ; and it is indeed obvious that

if the train had moved sideways by the step ab, and the

man had moved along it by the step aa, he would in the

end be at b' as in the case already considered.
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It Is sometimes necessary to compound together more
than two steps. Thus, in the example just used, the

train is moving relatively to the Earth, the Earth is

moving round the Sun, and the Sun is moving on his

own account through space,—or rather, for this is all

we can be sure about, he is moving relatively to certain

stars. So that to get the actual motion of the man in

the train relative to these stars, we must compound all

these motions together. The rule for this is very easily

found when the straight lines representing the steps

to be compounded are so arranged that the end of each

is the beginning of the next. Then the resultant is the

step from the beginning of all to the end of all.

Thus the steps ah, he, cd, de have the resultant ae ; for

ah and he give ac, then ac and cd give ad, ahd finally ad
and de give ae.

But when the lines are all arranged so as to have a
common beginning, the rule is rather more complex, and
will be examined after we hare found a shorter way of

writing about the composition of steps.

What is true of two steps, that their resultant Is inde-

pendent of the order in which they are taken, is true of

any number of steps. This we shall now prove.

First, the resultant is unaltered by the interchange of
two successive steps. For to inter-

change the steps he, cd, that is, to
*

take cd before be, we must draw he //
equal and parallel to cd, and then
from c' a line equal and parallel to

be. But this line will end precisely

at d, because hcdc is a parallelogram.

Nothing after the point d will be
altered, and consequently the resul-

tant ae will be the same as before.

Next, any change whatever in the order can be pro-
duced by a sufficient number of interchanges of successive

steps. This statement clearly does not apply to steps

only, but to any things whatever that can be arranged
in order ; for example, letters or figures. The truth of

the statement will be made clear by an example of the

process to be used. Thus, let it be required to change
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the order 123456 into the order 314625. Bring 3 to

the first place by successively interchanging it with 2 and
1. Then 1 will be in the second place as required. Bring
4 to the third place by interchanging it with 2, and then
bring 6 to the fourth place by interchanging it with 5 and
2; lastly, interchange 5 and 2, and the required trans-

formation is complete.

As no one of these six interchanges has altered the
resultant, it remains the same as at first. Thus the
proposition is proved.

COMPOSITION OF STEPS. ALGEBRA.

When we have to deal with steps

which are all in the same straight line,

as ab, be, cd, we may describe each of them as a fetep

of so many inches to the right or to the left. To find

the resultant we must add together the lengths of all

the steps to the right, and also the lengths of all the

steps to the left. The resultant is a step whose length

is the difference between these two sums, and it is to

the right if the former is greater, to the left if the latter

is greater. Thus the resultant of the steps ab, be, cd is,

as we know, ad; and the length of ad is ab + cd — cb.

The resultant is a step to the right because the sum
ab + cd is greater than c&.

It is convenient to regard a step to the left as a ne-

gative quantity, the addition of which is equivalent to the

subtraction of its length from that of a step to the right.

Thus + be is taken to be the same as — cb. And thus we
may write either

ad = ab + cd — cb,

or else ad=ab + cd + be.

The symbol +, placed between two steps, is thus made to

mean that their resultant is to be found, regard being

had to their directions. The resultant ab + be is always

ac, no matter how the points are situated ; but the length

ae is a sum or a difference of the lengths ab and be, ac-

cording as they are in the same direction or not.

We shall extend this meaning of the symbol + to

cases in which the component steps are not in the same
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straight line ; that is to say, db + cd shall always mean
the resultant of the steps ab and cd, not the sum of

their lengths unless this is expressly mentioned. Simi-

larly ab — cd will mean the resultant of ab and a step the

reverse of cd, namely dc.

After a little practice, the student will find that this

extension of the meaning of the signs +, —, and = does

not cause any confusion, but on the contrary enables us to

reason more clearly because more compactly. We shall

now use this method to investigate the resultant of seve-

ral steps the lines representing which are so placed as all

to have the same beginning.

In the case of two steps oa and ob,

the rule is to complete the parallelo-

gram oapb, and then the diagonal op
is the resultant. But if we join the

points ab by a straight line meeting
op in c, both op and ab are bisected at the point c. Thus
op is twice oc, which may be written op = 2oc. Observe
that 2oc means a step in the direction of oc, of twice its

length. We may now state our rule as follows :—find c

the middle point of ab, then the resultant of the steps

oa and ob is twice oc ; or, more shortly, oa + ob = 2oc.

We may extend this result. Let ^

ab be divided in c so that ac is to cb

as m to I, where I and w are any two
numbers. Then

l.aG= m.cb and (l + m) .ac = m. ab.

Now oc = oa + ac
',

that is to say, the

step oc is the resultant of oa and ac. Therefore

{I+ in)oc = {1 + m) oa + (1 + m) ac.

But (l + m) ac = m. ab, and ab = ao + ob = ob — oa.

Substituting this value, we find

{l + m) oc= {l + m) oa + m. ab

= [l + m) oa + m {ob — oa)

= l.oa + m.ob.

That is, if ab be divided in the ratio m : I at the point c,

then the remltant of I times oa and m times ob is l + m
times oc.
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We shall now write this proof in a shorter form. We
have oa =oc+ ca,

ob = oc + cb
;

therefore I .oa + m.oh = {l + m) .oc + l,ca + m.cb
= {l + m) . oc,

because the point c was so chosen that I .ac = m. cb, or

(which is the same thing),

l.ca+ m .cb = 0.

The former investigation exhibits

the process of finding oc in terms of

oa a.nd ob ; the latter is a shorter and
more symmetrical proof of the result

when it is known.
We proceed now to the case of

three steps, oa, ob, oc. Bisect ab in

f, then 2of= oa + ob, so that it remains

to find the resultant of oc and twice of. This is a case of

the last proposition, in which 1 = 1 and m = 2 ; we must
therefore divide cf in the ratio of 2 : 1. Taking then
a point g at two-thirds of the way from c to /, we find Sog
for the resultant of oa, ob, oc ; or, more shortly,

oa + ob+ oc = Sog.

This result is true wherever the point o is : whether
in the plane abc or out of it. And the method of de-

termining g is quite independent of the position of o.

By making o coincide with g, so that og is zero, we find

that ga + gb + gc = 0. This is independently clear, be-

cause ga +gb = 2gf, and 2gf+ gc = by construction.

Hence also we see that ^ is f of the way from a to d,

and from b to e, if d, e are the middle points of be, ca.

Or the lines joining the angles of a triangle to the middle

points of its sides meet in a point which divides each

of them in the ratio of 2 to 1.

To find the resultant of I times oa,

m times ob, and n times oc, we must
observe that whatever the point g is,

oa = og + ga, ob = og+gb, oc = og + gc,

and therefore

l.oa + m.ob + n.oc = {l + m + ri) .og

+ 1 .ga + m.gb + n .gc.
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If therefore we can find a point g sucli that

l.ga + m .gh + n . gc = 0,

we shall have I .oa + m. oh + n.oc = {l+ m-\-n).og. Now
I .ga + m.gb = (l + vi) . gf, if /is the point dividing ab in

the ratio m : I. Hence {l+m)
. gf+ n.gc = 0, or g is the

point dividing cf in the ratio l + m : n. We might
equally well have found g by dividing he in the ratio

n : m at d, or ca in the ratio I : n aX e. That is, we
have the equations I.fa = iri.bf, n.ec = l.ae, and m.db=n.cd,
between the lengths of the six segments into which the
sides are divided. Multiplying these equations together,

we find that the product Imn divides out, and that

fa.ec.dh = hf .ae .cd. Hence if ad, he, cf meet in a
point, then af.ce.hd=ea.dc.fh. This theorem is a
useful criterion for the concurrence of three lines drawn
through the vertices of a triangle.

A similar set of theorems
belongs to the composition of

four steps. If/, g, h are the

middle points of he, ca, ah, and
/', g', h' of da, dh, dc, then
jf/', gg', hh' bisect one another

at a point k, such that

oa + oh + oc + od = 4o^.

For oa + oh = 2oh,

and oc + od = 2oh'

;

also if k be taken at the middle point of hh', oh + oh'= 2ok',

therefore oa + oh-'r oc + od^^ {oh + oh') = 4o/;. And the

symmetry shews that this k is also the middle point

of gg' and off/

.

Moreover, if we take a i of the way from/to d, then

A; is :| of the way from a to a. For we know that

oh + oc + od = Soot, and therefore oa + 3oa = 4!ok, wherever
is : or taking o to coincide with k, ka + Sku = 0, which

shews that k divides aa. in the ratio of 3 : 1.

Observe that the points ahcd may either be in the

same plane, or form a triangular pyramid, or tetrahedron.
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In general, if we have n steps oa^, oa^, oa^.-oa^^, it is

always possible to find a point g such that

as this sum may be conveniently written. The position

of the point g will depend upon the points a^, a^...a^,

but not in the least upon the point o. To prove this,

suppose we take a point p, and draw the steps pa^,

pO'^'-'Pctn- ^^^ resultant of these must be some step,

which can be found by arranging them tandem as in our

first process. Let pg be the n^^ part of this resultant, so

that n .pg = ^pa. Now we know that

og = op + pg, oa^ = op+pa^, ...oa^ = op+pa^.

Therefore n.og = n. op +n.pg = n .op + Spa = Xoa.

Thus g being chosen so that n.pg = Xpa for a particular

position of p, we see that n .og = Xoa for any point o

whatever. This point g is called the mean paint, or

mid-centre, of the points a^, a^...a^^.

Similarly, it may be shewn that there is a point g
such that, if l^, /j...?„ are auy numbers,

(Zj+ h+." + lJog = l^. oa^ + ^2 . 0^2+ ... + ?„ . oa„,

whatever point o is.

And lastly, if we have n steps afi^, aj)^,...ajb^, anyhow
situated, their resultant is n times the step from the mean
point of flj, a^-.-a^ to the mean point of b^, h^...h^. The
proof of this is left as an exercise for the reader.

RESOLUTION AND DESCRIPTION OF STEPS.

"We have already seen that a step in a known direction

may be completely specified by describing its length.

This may be done in two ways. First, approximately,

by stating the number of inches or centimeters and parts

of an inch or centimeter; if the parts are expressed in

decimal fractions, the approximation may be carried to

any required degree of accuracy by taking a sufficient

number of places of decimals. But as the length to be
described is generally incommensurable in regard to an
inch or a centimeter, this method is very rarely anything
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more than an approximation. Second, graphically, by
drawing the length to scale. A certain line being marked
out upon the diagram to represent a centimeter, another

line is drawn bearing the same ratio to this one that

the length to be described bears to a centimeter. Thus
at the side of a map there is a scale of miles, by which the

distance between two places may be estimated. The
actual distance bears the same ratio to a mile that the

distance on the map bears to the representative length

on the scale. This is the theoretically correct way of

representing all continuous quantities, except angles,

which should also be drawn ; though it is sometimes
convenient to describe an angle in terms of degrees,

minutes and seconds ; or in circular measure, which is the

ratio of its arc to the radius.

When it is known that a

step lies in a certain plane, it

may always be resolved into

two components which are

in fixed directions at right

angles to one another. Let
oX, y be two fixed lines at

right angles to one another.

Let op be the step which it is

required to resolve. Draw
pm perpendicular to oX, then op = om + mp ; or the step

op has been resolved into two, one of which is in the
direction oX, and the other in the direction o Y.

Let X be the number of units of length (e.g. centi-

meters) in om, and y the number in mp. Let also i

represent a step of one centimeter along oX, and j a
step of one centimeter along o Y. Then om is a; times i,

or xi; and mp is y times j, or yj. Hence the step

op = ad + yj ; and we may say that every step in the given

plane may be described in the form sd + yj, where x and y
are two numerical ratios, and i, j are fixed unit steps at

right angles to one another.

When the lengths x arid y are given either approxi-

mately or graphically, the step (known to lie in a given
plane) is completely described in the same way.

It is to be understood that when m falls to the left of
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oY, xis a, negative quantity ; and when p falls heloiu oX,

y is a negative quantity.

"When it is not known in what plane a step lies, we
can still resolve it into three components along fixed

directions at right angles to one another. Let oX, o Y, oZ
be three lines at right angles to one another, op the step

to be resolved. Draw 'pn perpendicular to the plane XoY^
and nm perpendicular to oX. Then op = om + mn + np,

or the step op has been resolved into three, which are

respectively in the directions oX, o Y, oZ.

Let, as before, x, y be the

number of centimeters in om,

mn, and let z be the number in

np. Let also i, j, k be three

steps of one centimeter each in

the directions oX, o Y, oZ. Then
cm = xi, mn = yj, np = zk, and
op = xi+ yj + zk. Thus we see

that any step whatever can he

described in theform £c{+yj+ zk,

where x, y, z are three numerical ratios, and i, j, k are

fixed unit steps at right angles to one another.

When the lengths x, y, z are given approximately or
graphically, the step is completely described in the same
way. It is to be understood that z is reckoned negative
when p lies on ikxQ further side of the plane XoY.

We shall find other quantities, besides steps, which
can be resolved into components in three fixed directions,

and completely described by assigning three lengths.

All such quantities are called vectors, or carriers, from
their analogy to a step of translation or carrying. They
can always be described in the form xi + yj + zk, where
i,j, k are fixed unit vectors at right angles to one another.

Except these unit vectors, it is usual to represent a vector

either by the beginning and end of the line representing

it, as op, or by a single small Greek letter, as a, p.

When the position of a point jp is described by means
of the step from a fixed point o to it, the point o is called

the origin, and the components x, y, z are called the

co-ordinates of jp. The lines oX, oY, oZaxe called axes cf
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co-ordinates, and the planes wliicli contain tliem in pairs

the co-ordinate planes. The step or vector op is called

the position-vector of the point p.

REPRESENTATION OF MOTION.

We go on to describe more completely the translation

of a rigid body. Hitherto we have considered only the
step from the beginning to the end of the motion ; we
shall now take account of the path and of the time in

which it is described. As before it will be sufficient to

consider the motion of a single point of the body.

To describe completely the motion
of a point p from a to b it would be
necessary to assign the path and also

the position of the point in the path at

every instant of time. The path may
be assigned by drawing it, or by stating

its geometrical properties. The position of the point

in the path may be assigned by giving the length op
measured along the path at every instant , and this may
be done in two ways.

First, by the approximate or numerical method. We
may construct a table, in the first column of which are

marked seconds or fractions of a second, and in the second
are written against them the number of centimeters in

the length ap at that time. Tables on this principle are

printed in the Nautical Almanac, giving the position at

SECONDS

any time of the Sun and the planets; principally of the

Moon. The method is imperfect, because it only gives

the position at certain selected moments, and then only

approximately.
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Secondly, by the grapliical method. In this, the

seconds are marked off on a horizontal line oX, and above

every point of this there is set up a straight line repre-

senting the distance traversed at that instant. Thus,

at the instant t, about 3| seconds from the beginning of

the motion, the distance traversed was tq, on the scale

of centimeters marked on oY. Drawing qp horizontal

to meet o Y, we find the distance about 7| centimeters.

The tops of all these lines form a curve oqr, which is

called the curve of positions of the moving point. The
figure is equivalent to a table with an infinite number
of entries, each of which is exact. The line oX is the

first column, and the lengths tq, etc., answer to the second

column.

In certain ideal cases of motion, it is possible to get

rid of one objection to the numerical method, and to

make it partially describe the position of the point at

every instant of time. This is when we can state a rule

for calculating the number of centimeters passed over

from the number of seconds elapsed; or, which is the

same thing, when we can find an algebraical formula

which expresses the distance traversed in terms of the

time. Such motions do not occur accurately in nature;

but there are natural motions which closely approximate

to them, and which for practical purposes are adequately

described in this way. We go on to consider some of

these ideal motions.

UNIFORM MOTION.

When equal distances are gone over in equal times,

the motion is said to be uniform.

In uniform motion, the distances gone over in unequal

times are 'proportional to the times (Archin;iedes). For

let t and The unequal times in which the distances s and

S are gone over. Take any two whole numbers m and n.

Then if we take n intervals of time equal to t, there will

be gone over in them n distances equal to s ; that is, a

distance ws is gone oVer in the time nt. Similarly, mS
will be gone over in the time mT, Now if nt is greater

than mT, ns is greater than mS ; for in a greater time
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a greater distance must be traversed. If nt is equal to

mT, lis is equal to mS; and if nt is less than mT, ns is less

than mS. Hence by Euclid's definition of proportion,

S : s = T : t

Let V be the number of centimeters gone over (or

described) in one second ; then s : v=t : 1, or s = vt,

where s is the number of centimeters described in t

seconds. Here all three numbers may be incommen-
surable ; but the algebraic formula s = vt supplies us with

a rule for calculating s when t is known ; viz., multiply t

byv.
The curve of positions in this case

is a straight line. For, if we set up
the length v above the point 1, and
draw through o the straight line ovq

;

then on drawing tq vertical through
any point t, we shall have tq : v = ot : 1,

or tq correctly represents the distance described in the

time ot.

Uniform motion may of course take place along any
path whatever. But there are two cases of special in-

terest; when the path is a straight line and when it is

a circle.

UNIFORM EECTILINEAR MOTION.

Let p be a point moving uniformly

along the straight line ahp, and let o

be any fixed point. We shall com-
pletely describe the position of the

point p at any instant, if we specify

the step which must be taken to go
to 2^ from o at that instant. Now
op = oa+ap. Let aJ be the distance

traversed in one second, then ap, being

the distance traversed in t seconds,

is t . ah. Hence we have

op = oa-\-t. ab,

or, if we denote the step op by p, oa by a, ab by /3, then

p^a + t^.
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This is called the equation of uniform rectilinear motion.
It is simply shorthand for this statement :—the steps to

be taken in order to get from o to the position of p after t

seconds are, first, the step a {oa) which takes us to the
position at the beginning of the motion, and then t times
the step /3 (ah).

Two uniform rectilinear motions compound into a
uniform rectilinear motion.

While p moves uniformly
along the line ab, let q move
uniformly, relative to p, along

cd; and let cd be the dis-

tance traversed in one second
in the relative motion. Draw
de equal and parallel to ab,

'^
''

^

then ce is the actual motion
of q in one second. Draw qr
parallel to ab, meeting ce pro-

*"

duced in r. Then, cq being traversed in the same time
as ap, we must have cq : cd = ap : ab = t : 1. Now
cq : cd= qr : de, so that qr = ap. Hence r is the actual

position of q at the end of the time t. It is in the

straight line ce, and cr : ce = cq : cd = t : 1. Thus the
actual motion of g' is a uniform rectilinear motion.

The same thing appears by considering the equations.

Let pj be the step op, and p^ the step pq ; then p = Pi + p^
is the step oq. Now we have

/^i
= Oj + f/3j, where a^ = oa, /S^ = ab,

and therefore

P =Pi + P2 =«! + ffa + K/3i + A).

the equation to a uniform rectilinear motion.

The curve of positions of any mo-
tion whatever may be conceived to be
constructed by help of a uniform recti-

linear motion, in this way. Let the
original motion be that of a point p along the path ah;

c. 2
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Let a point "p move along oF at the

same time, so that the distance op'

is at every instant equal to the dis-

tance op measured along the path.

While this motion takes place, let the

straight line oY have a uniform hori-

zontal translation of one centimeter

in every second; then by this com-
bination of motions the point p' will describe the curve of

positions oq^.

Hence the curve of positions of any rectilinear motion

is described by combining that motion with a uniform
rectilinear motion of one centimeter per second in a direc-

tion at right angles to it.

UNIFORM CIRCULAR MOTION.

In uniform circular motion every point p of the moving
body goes round a circle so as to describe equal arcs in

equal times, and therefore proportional arcs in different

times.

The radius of the circle is called the amplitude of the

motion.

The time of going once round is called the period.

If the arcs measured on the circle are reckoned from a
point a, and if the moving point started from e at the

beginning of the time considered, the angle aoe is called

the angle at epoch, or shortly the epoch. Strictly speak-

ing, the epoch is the beginning of the time considered.

The ratio of the arc ap to the whole

circumference is called the phase at any
instant.

Let n be the circular measure of the

arc described in one second, and a the

radius of the circle; so that na is the

length of the arc described in one

second. Then nat is the length of arc,

ep, described in t seconds, and nt is its circular measure.



UNIFORM CIRCULAR MOTION. 19

Let also e be the circular measure of aoe ; then circular

measure of aop
= nt + €.

We shall now obtain an expression for the step op
at any instant. Draw pm, oh, perpendicular to oa. Then
op = om + mp. Now as far as lengths are concerned,

om J mp • r\ ' 1— = cos aop, and —^ = sin aop. Ur, since op = oa = ob
op op
in length, om = oa cos aop and mp — oh sin aop. In the
equation om = oa cos aop, the quantities om and oa
may be regarded as steps; for as they are in the same
direction, one is equal to the other multiplied by the

numerical ratio cos aop. The same may be said of the

equation mp = oh sin aop. Now aop = nt + €, and therefore

op = oa. cos {nt + €) +ob . sin {nt + e),

or if we write p for op, ai for oa, and aj for o&, so that *, j
are unit steps along oa, oh, then

p=a {/cos {nt + e) +j sin {nt + e)].

This is the equation to uniform circular motion. The
angle nt-\-e is called the argument of this expression

for p.

A circular motion which goes round like the hands of

a clock, or clockwise, is said to be in the negative sense

;

one that goes round the other way, or counter-clochwise,

is said to be in the positive sense.

Two uniform circular motions ,-- "->I!^

of the same period and the same /' ^^.-^-/^
*\

sense compound into a uniform / /""^^
\ /r\ \

circular motion ofthat period and / / /\Ty^\ ''»

sense. i ( ( \y^\ \ \

Suppose the circles so placed
\ \ V J i \

as to have the same centre. The \ \ ^^-—^ / /
motions of p and g- relative to o \ \^.____,^/ /
may be combined by completing \,^ x'
the parallelogram oprq ; then the

"- ''

motion of r is the resultant. We may consider the paral-

lelogram oprq^ to be made of four jointed rods, of which

op and og turn round o. When these motions have the

2—2
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same period and the same sense, the angle ])og remains
always constant ; therefore the shape of the parallelogram

remains unchanged. Consequently or is of constant

length, and makes, always the same angle with op or

oj. Hence r goes round uniformly in a circle of radius or.

Let op = p^, oq = p^, or^p. Then, if a, h are the
amplitudes, i, j unit steps at right angles to one another,

p^ = ai cos {nt + e^ + aj sin {nt + e^),

p^ = hi cos {nt + Cg) + hj sin (jit + e^,

p = p^+ p^=i[{aco^€^+hco&€^cosnt— {a^me^+h&ine^smnt]

+j{(acosej+&cose2)sinw«+ (asinej+ 5sine2)cos7if},

"Which may be written

ci cos {nt + e) + c/ sin {nt + e),

provided that a cos e^ + 5 cos €^ = c cos e,

a sin 6j + J sin ej,= c sin e.

From these two equations we must find c and e. Dividing

the second by the first, we find

a sin 6, + & sin e„
tan 6 = '—

5

^ .

a cos 6j + 6 cos fj

Squaring both sides of both equations, and adding them
together, we find

c2 = a''+&2+2a5cos(6,-6j.

These formulae determine the amplitude and epoch of

the resultant motion. It is left to the reader to verify

them by comparison with the geometrical solution.

Like the preceding theorem about uniform rectilinear

motions, this theorem may be extended to any number of

circular motions of the same period and sense ; by first

compounding the first two, then the third with their

resultant, and so on. Or the extended theorem may
be proved directly, either by the geometrical or by the

analytical method.^

HARMONIC MOTION.

While the point p moves uniformly round a circle, let

XI perpendicular pm be continually let fall upon a diameter
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axi. Then the point m will oscillate to

and fro between a and a . This motion
of the point m is called simple har-
monic motion.

The amplitude, period, epoch, and
phase of the simple harmonic motion
are the same as those of the uniform
circular motion of p. The epoch, how-
ever, must be reckoned from one extremity of the diameter
on which m moves ; i. e., either from a or from a'.

We may define these quantities solely in terms of the
harmonic motion, thus : the amplitude is half the distance

between the two extreme positions ; the period is the
interval of time between two successive passages through
the same position in the same direction ; the phase at

any instant is the fraction of the period which has elapsed

since the point was at its extreme position in the positive

direction; the epoch is 27r multiplied by the phase at

the beginning of the time considered.

The equation to the simple harmonic motion is

or

cm = oa cos aop = oa cos {nt + e)

;

p = acos (nt+ e).

27r
Here the amplitude is a, the period is — (for since in

time t the circular measure of the arc described is nt, it

27r
follows that in time — the circular measure is 27r), the

n

i epoch is e, and the phase is
nt-\- €

Uniform circular motion is compounded of two simple

harmonic motions of equal period, whose amplitudes are

equal in length and perpendicular in direction, and whose

phases differ hy \. Namely, the motion of p is com-
pounded of the motions of I and m, which answer to this

description. Any two diameters at right angles will

serve for this resolution.
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The curve of positions of a simple harmonic motion
tnay be constructed by means of

a right circular cylinder. (This

surface is traced out by a straight

line which revolves about a fixed

parallel line ; the moving line is

called a generator, the fixed line

the OMS, of the cylinder.) Cut
the cylinder through obliquely by
a plane cc, and through o the

Centre of cc draw a plane perpen-

dicular to the axis of the cylinder,

which will cut the cylinder in a

circle ahdh'. Let hh' be the in-

tersection of the two planes. A
plane through o perpendicular to hh' will contain cc and
ad, and everything will be symmetrical in regard to

this plane.

The curve in which the plane cc cuts the cylinder

is called an ellipse. We shall shew that if a piece of

paper be wrapped round the cylinder, marked along this

curve, and afterwards unrolled and laid flat, the trace

upon it will be the curve of positions of a simple harmonic
motion*. Let 5- be a point on this curve; draw qp per-

pendicular to the plane ahdh', meeting the circle in p',

draw pn, pi perpendicular to ad and hh' respectively.

Then the triangle qpl is similar to cao. Therefore

, on
pq : Ip = ac : oa, or p>(l

= (^^ • — = ®c cos ax)p.

If then p moves uniformly round the circle ahdh' at

the rate of one centimeter per second, we shall have

pq = ac cos [nt + e), where n.a = l.

* The reader should cut out in paper a wavy curve of the shape
drawn in the figure, and then bend it into the form of a cylinder, when
the plane elliptic section will become manifest.
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Hence pq will at every instant be the step from its mean
position to a point which is moving in a simple harmonic
motion of amplitude ac, period 27r . oa. When therefore

the figure is unrolled from the cylinder, the wavy curve

(called the harmonic curve, or curve of sines because the
IT h f)

ordinate jjg is equal to ac . sm ^ p- , that is, proportional

to the sine of a multiple of the abscissa h'p) is the curve

of positions of the simple harmonic motion aforesaid.

The amplitude is the height of a wave, ac. The period

is the length of a wave, h'b", every centimeter in that

length representing a second of time.

The curves of position of motions compounded of

simple harmonic motions in one line may be constructed

by actually compounding the

curves of position of the se-

veral motions—that is, by

adding together their ordi-

nates to form the ordinate of

the compound curve. Thus in

the figures the height of the dark curve above the hori-

zontal line is at every point halfiliQ algebraic sum (which is

more convenient for drawing than the whole sum) of the

heiefhts of the other two ; as for

example Imq = mp + mr. A
depth below the line is counted

as a negative height. The
first figure represents the com-

position of two simple har-

monic motions of the same
,

period ; the second two such motions in which the period

of one is half that of the other. The student should

construct a series of these for different epochs of one of

the motions, and then compare them with those figured

in Thomson and Tait's Natural Philosophy, p. 43.

In the case where the component motions have the same

period, the resultant is a simple harmonic motion of that

period. This follows at once from the corresponding

theorem in regard to circular motions. Completing the

parallelogram opqr, and drawing perpendiculars pi, qm, rn
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upon aa\ we see that ol=qs
=7nn, and consequently on=ol
+ om. Therefore the motion
of n is compounded of the

motions of I and m. But
since r moves uniformly in a
circle, the motion oi n is a
simple harmonic motion. And
we have seen that, when

p^ = a cos {nt + eX

p^ = bcos{nt + eX
then P — Pi'^Pi — ^ <20S (^^ + ^)'

provided that (? = a* + h'^ -{ 2ab cos (e^ + ej,

and
a sm €, + h sm e„

tan e = —
z
——

^

a cos € + cos 6

It follows at once that the theorem is true for any number
of simple harmonic motions having the same period.

The use of the jointed parallelogram opqr for com-
pounding harmonic motions of different periods is exem-
plified in Sir W. Thomson's Tidal Clock. The clock has

two hands whose lengths are proportional to the solar

and lunar tides respectively, while their periods of re-

volution are equal to the periods of those tides. A
jointed parallelogram is constructed, having the hands
of the clock for two sides. If the clock is properly set,

the height of that extremity of the parallelogram which
is furthest from the centre will be continually proportional

to the height of the compound tide. For this purpose

a series of horizontal lines at equal distances is drawn
across the face of the clock, and the height is read off

by running the eye along these to a vertical scale of feet

in the middle.

ON PROJECTION.

The foot of the perpendicular from a point on a
straight line or plane is called the orthogonal projection

of that point on the line or plane, or more shortly (when
no mistake can occur) the projection of the point. Thus
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the point m is the projection of p on the straight line aa

.

We say also, by a natural extension, that the motion of m
is the projection of the motion of p. Thus simple har-

monic motion is the orthogonal projection of uniform
circular motion on any straight line in the plane of the
circle.

When all the points of a figure are projected, the

figure formed by their projections is called the projection

of the original figure. Thus, for example (first figure of

p. 22), the circle oba'h' is the projection of the ellipse

cbc'h', for it is produced by drawing perpendiculars from
every point of the ellipse to the plane. The point a is

the projection of c, a of c', p of q, etc. ; h and h' are their

own projections, being already in the plane of the circle.

Instead of drawing lines perpendicular to a plane from
all the points of a figure, we may also project it by draw-
ing lines all parallel to one another, but in some other

direction. This is called oblique projection. The ellipse

cbc'h' is an oblique projection of the circle dba'h', for the

lines ac, ac, pq are all parallel to one another, although

they are not at right angles to the plane of the ellipse.

Orthogonal and oblique projections are both included

under the name parallel projection, because in both cases

the projection is made by drawing lines which are all

parallel to one another.

We may also project a figure on to a given plane

by means of lines drawn through a fixed

point; this is called central projection.

It occurs whenever a shadow is cast by
a luminous point. If we suppose the

centre of projection c to move away to

an infinite distance, the lines converging

to it will all become parallel. Thus
we see that parallel projection is only

a particular case of central projection

in which the centre of projection has

gone away to an infinite distance. The
shadow cast by a bright star is for

all practical purposes a parallel projec-

tion.
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The projection of a straight line is made by drawing
a plane through it and through the centre of projection.

Thus if we draw the plane cab and produce it to meet
the plane of projection in a'b', this line ab' will be the

projection of ab. In parallel projection we must draw
through the line a plane parallel to the projecting lines,

like the plane aba'b' in the second figure. We see in

this way that the projection of a straight line is always a

straight line, and that, since the line and its projection

are in the same plane, they must either meet at a finite

distance or be parallel (meet at an infinite distance).

In parallel projection, parallel lines are projected into

parallel lines, and the ratio of their lengths is unaltered.

Through the parallel lines ab, cd

we must draw the planes aba'b',

cdc'd' both parallel to the pro-

jecting lines, and therefore

parallel to each other. These
planes will consequently be cut

by the plane of projection in

the parallel lines a'b', c'd'.

Moreover the triangles pbb',

qdd', having their respective

sides parallel, are similar; therefore pb : qd=pb' : qd',

and so also ab : cd= a'b' : c'd'.

The orthogonal projection of a finite straight line on a
straight line or plane is equal in length to the length of the

projected line Tnultiplied by the cosine of its inclination to

the straight line or plane. If pq is the

projection of PQ, draw pq equal and
parallel to PQ. Then Qq is parallel to

Pp) and therefore perpendicular to pq;
therefore the plane Qqq is perpen-

dicular to pq, and therefore qq is per-

pendicular to pq. Hence pq=pq' cos

qpq — PQ X cosine of angle between
PQ and pq.

The orthogonal projection of an area on a plane is equal

to the area multiplied by the cosine of its inclination to the



PEOJECTION OF AN AREA. 27

plane. This is clearly true for a rect-

angle ABCD, one of whose sides is

parallel to the line of intersection of

the planes. For the side AB is un-
altered, and the other, BC, is altered

into Be, which is BG cos 6. Hence it

is true for any area which can be made
up of such rectangles. But any area

A can be divided into such rectangles

together with pieces over, by drawing
lines across it at equal distances per-

pendicular to the intersection of the

two planes, and then lines parallel to

the intersection through the points

when they meet the boundary. All

these pieces over, taken together, are less than twice

the strip whose height PQ is the difference in height

between the lowest and highest point of the area; for

those on either side of it can be slid sideways into that

strip so as not to fill it. And by increasing the number
of strips, and diminishing their breadth, we can make
this as small as we like. Let then A' be the sum of

the rectangles, then A' can be made to differ from A
as little as we like. Now the projection of A' is A' cos 0,

and this can be made to differ from the projection of

A as little as we like. Therefore there can be no finite

difference between the projection of A and Acosd, be-

cause A' cos can be made to differ as little as we like

from both of them.

PROPERTIES OF THE ELLIPSE.

The ellipse may be defined in various ways, but for

our purposes it is most convenient to define it as the

parallel projection of a circle. This definition leads

most easily to those properties of the curve which are

chiefly useful in dynamic.

Centre. The centre of a circle bisects every chord

passing through it; such a chord is called a diameter.
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The projection of the centre of the circle is a point hav-
ing the same property in regard to the ellipse, which is

therefore called the centre of the ellipse. For let aca be
the projection of ACA'

',
then ac : ca == AG : CA'', but

AC= CA', therefore ac = ca. It follows also that if any
Uuo chords bisect one another, their intersection is the

centre.

J
Conjugate Diameters. The tangents at the extremity

of a diameter of a circle, AA', are perpendicular to that

diameter ; if we draw another diameter BB' perpendicular

to AA', and therefore parallel to these tangents, the

tangents at the extremities of BB' will be perpendicular

to BB', and therefore parallel to AA'. It follows that

in the ellipse, if we draw a diameter hb' parallel to the

tangents at the ends of aa' the projection of AA', this

line bb' will be the projection of BB'y for parallel lines

project into parallel lines; therefore also the tangents

at the extremities of bb' will be parallel to aa'. Such
diameters are called conjugate diameters; they are pro-

jections oi perpendicular diameters of the circle.

Each of the diameters AA', BB' bisects all chords
parallel to the other ; thus AA' bisects P ^ in the point

B. Now P^ is projected into a chord pq parallel to bb',

and the middle point B is projected into the middle point

r. Hence also in the ellipse, each of two conjugate

diameters bisects all chords parallel to the other.

The assumption here made, that a tangent to the

circle projects into a tangent to the ellipse, may be
justified as follows. If we take a line PQ cutting the
circle in two points, and move it away from the centre

until these two points coalesce into one, as at A, the
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line becomes a tangent. Now when these two points

coalesce, their projections must also coalesce ; therefore

when the line becomes a tangent to the circle, its i3ro-

jection also becomes a tangent to the ellipse.

Relation between ordinate

and abscissa. In the circle, if

FM, PL be drawn parallel to

CB, CA respectively, we know
that CP^ = CM^ + MP\ and
since CP = CA = CB, it follows

that

CA' ' GB^
= 1.

cm
ca:

I mp ^
Hence it is equally true in the ellipse that

For the ratio of parallel lines being unaltered by parallel

projection, cm : ca = CM : CA, and mp : cb =MP : CB.
The line mp is called an ordinate or standing-up line, and
cm is called an abscissa or part cut off. If we write x for

cm, y for mp, a for ca, h for cb, the equation becomes

2 2

^ + 2^-1
a

The same relation may be expressed in another form
which is sometimes more useful. Namely, observing that

the rectangle am . ma = {ca + cm) {ca — cm) = ca* — cm^,

we find that mp^ : cV = dm.ma : ca^. This may also be
proved directly by observing that it is true for the circle

and that the Tatios involved are ratios of parallel lines.

This relation shews that when two conjugate diameters

are given in magnitude and position, the ellipse is com-
pletely determined. For through every point w in aa' "w^

can draw a line parallel to bb', and the points p, p where
this line meets the ellipse are fixed by the equation

mp^ (or mp'^) : cb^ = a'm . ma : ca^.
'

Axes. The longest and shortest diameters of an ellipse

are conjugate and perpendicular to each other. We may
shew, in general that if the distance of a curve from a
^xed point o increases up to a point a and then decreases.
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the tangent at a, if any, -will be
perpendicular to oa. We say if any,

because the curve might have a sharp

point at a, and then there would
be properly speaking no tangent at

a. Since the distance from o in-

creases up to a and then decreases,

we can find two points p, q, one on
each side of a, such that the lengths

op, oq are equal. Then the perpen-

dicular from on the line pq will fall midway between

p and q. Now suppose p and q to move up towards a,

keeping always the lengths op, oq equal; then the foot

of the perpendicular on pq will always lie between p
and q. When therefore the line pq moves on until p
and q coalesce at a, the foot of the perpendicular will

coalesce with them, or oa is perpendicular to the tangent

at a.

The length oa is called a maadmum value of the dis-

tance from 0. It need not be ab-

solutely the greatest value, but it

must be greater than the values

immediately close to it on either

side. A similar demonstration ap-

plies to a point where the distance,

after decreasing, begins to increase;

that is, to a minimum value of the

distance.

Applying these results to the

Ellipse, we see that the tangents

at the extremities of the longest

and shortest diameters (which of

course must be points of greatest

and least distance from the centre)

are perpendicular to those diameters. Let hh' be the
shortest diameter, and draw aa' perpendicular to it, and
therefore parallel to the tangents at b, b' ; then au is

conjugate to hb', and consequently the tangents at a, a'

are parallel to bb', and therefore perpendicular to aa'.

Therefore aa' and bb' are conjugate diameters per-
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pendicular to each other. Now describe on aa' as diameter
a circle, aB a'B'. If this circle be tilted round the line

aa, until B is vertically over &, and then orthogonally

projected on the plane of the ellipse, the projection will

be an ellipse having aa' and hV for conjugate diameters,

which must therefore be the same as the given ellipse.

Hence if Ppm be a line parallel to hh' meeting the circle,

ellipse, and ad in P, p, m respectively, we must have
mp : mP= cb : cB. Hence the ellipse lies entirely within
the circle, and therefore no other distance from the centre

is so great as ca or cd ; that is, aa' is the greatest dia-

meter.

The diameters aa' and hb' are called the axes of the
ellipse ; ad is the major or transverse axis, hb' the minor
or conjugate axis. The circle on ad as diameter is called

the auxiliary circle.

No other pair of conjugate dia-

meters can be at right angles ; for

they are projections cp, cq of per-

pendicular diameters cP, cQ of the

circle, and the angle pcq is always a^ ^

—

^cf^"^—^a
greater than the right angle Pc Q.

We see, then, that in every case of parallel projection,

there are two sets of parallel lines, perpendicular to each
other in the original figure, that remain perpendicular to

each other in the projected figure.

ELLIPTIC HAEMONIC MOTION.

A parallel projection of uniform circular motion is

called elliptic harmonic motion.

An elliptic harmonic motion may he resolved into two
simple harmonic motions of the same period along any two
conjugate diameters of the ellipse, these motions differing in

phase J. For we know that the uniform circular motion
may be resolved into two such simple harmonic motions

along any two perpendicular diameters. And the parallel

projection of a simple harmonic motion is clearly another

simple harmonic motion, with the same period and phase.
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Conversely, any two simj^le harmonic motions on different

lines, having the same period and differing in phase ^, com-
pound into harmonic inotion in an ellipse having those two

lines for conjugate diameters. For let the ellipse be con-

structed ; then we have shewn that a circle can be so

placed as to have the ellipse for its orthogonal projection.

Consequently the two given conjugate diameters are ortho-

gonal projections of two perpendicular diameters of the

circle, and the harmonic motions on them are projections

of harmonic motions of the same period and phase on the

diameters of the circle. But the resultant of these is uni-

form motion in the circle ; therefore the resultant of their

projections is the projection of uniform circular motion,

namely, harmonic motion in the ellipse.

The equation to elliptic harmonic motion is

p = a cos {nt + e) 4- /3 sin {nt + e),

where a, /3, are two semiconjugate diameters

of the ellipse. For the equation to the
motion of m is p = a cos {nt-\- e) if a = ca,

and that to the motion of I, having ampli-

tude ^, the same period, and phase differing

by \ (and therefore epoch differing by ^tt,

quarter circumference), must be

^ cos (n« + e — ^tt) = /3 sin {nt + e).

• And the motion of p is compounded of these two.

The resultant of any number of simple harmonic motions

in any directions, having the same period, is elliptic har-

monic motion. Let the equations to the different mo-
tions be

Pj = ttj cos {nt + ej, p^ = a^ cos {nt + e^), . • .p„ = «„ cos {nt + ej.

Expanding these cosines, we have, for example,

p, = ffj cos e^ . cos nt — flj sin e^ . sin nt

;

and then, adding all together,

p = pj+ p^+ ...+ p„= (ajCosej+a^cos e^+.. .+a^ cos ej cos nt
— (c(j sin 6^+ OTg sin e^-\- . . . + or^ sin e„) sin nt=(x cos nt+^ sin nt,

if a = Sa cos e, — /3 = Sa sin e. This is the equation to

elliptic harmonic motion.
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It is worth while to notice the meaning of the steps in
this demonstration. The expansion

a^cos {nt + 6j) = Oj cos e^ . cos nt— a^ sin e^ . sin nt

is equivalent to a resolution of the simple harmonic motion
into two in the same line, differing in phase \. The epoch
of one of these may be assumed arbitrarily, say tj ; for

a^ cos {nt + 61) = Oi cos (wi + 1; + e^— 77)

= a^ cos (e^ — •»;) . cos {nt + 'n) —«i sin (e^ — 77) . sin {nt + rf).

This is a particular case of the resolution of elliptic har-
monic motion into two simple harmonic constituents,

differing in phase \, the epoch of one being arbitrary

(since any two conjugate diameters may be chosen). Then
the summation 2a cose, cos nt = a cos nt mea.ns that the
resultant of any number of simple harmonic motions of
the same period and phase is a simple harmonic motion
of that period and phase. Thus all the simple harmonic
motions are reduced to two, which differ in phase l ; and
the resultant of these, as we know, is elliptic harmonic
motion.

COMPOUND HARMONIC MOTION.

If we combine together two simple harmonic motions in

different directions with different periods, the resultant

motion is periodic if the periods are commensurable, and
its period is their least common multiple ; if they are in-

commensurable the path of the moving point never returns

into itself so as to form a closed curve. In either case

the most convenient way of studying the resultant motion is

to convert it into motion on a cylinder, by combining with
it a simple harmonic motion perpendicular to its plane

which forms a uniform circular motion with one of the

components. Suppose, for example, that we wish to study
the motion p = a cos {nt + e) + /3 cos mt (where a may be
taken perpendicular to /3) for different values of e. Then
we should combine with it a motion p = y sin {nt + e), where

7 is perpendicular to both a and /3, and of the same length

as a. The two terms a cos {nt+ e) + 7 sin {nt + e) give a
uniform circular motion in a plane perpendicular to /3.
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Thus we have now to combine a uniform circular motion
with a simple harmonic motion perpendicular to its plane.

Or, we suppose a generating line to move uniformly round
a cylinder, while a point moves up and down it with a
simple harmonic motion. This is clearly the same thing as

wrapping round the cylinder the curve of positions of the

motion ^ cos mt. Hence the path of the motion on the

cylinder may always be obtained by wrapping round the

cylinder a harmonic curve.

Now the original motion

p = a cos {nt + e) + /3 cos mt
is clearly the projection of this motion on the cylinder

upon a plane perpendicular to 7; which plane we may
suppose to be drawn through the axis of the cylinder.

But by taking different planes through the axis for plane

of projection we produce the same effect as by varying e.

For this is the same as varying the diameter 2a of the

circle on which we project the uniform circular motion

p = a cos {nt + e) + 7 (sin nt + e). And 'if the same circular

motion be projected on two different diameters aa and bb',

the resulting simple harmonic motions will differ in epoch

by the angle aob.

"We may illustrate this by the case m = 2n, when the

motion is p = a cos {nt + e) + /3 cos 2nt. The case e = is

always one of special simplicity, being (like the simple

harmonic motion) a case of oscillation on a finite portion

of a curve.

Let then

Then

om = ^ cos 2nt = 06 cos 2nt,

nnp = a cos nt = oc cos nt.

am = ;8 (1 + cos 2nt)

= 2^ cos" nt = ah.co^nt,

but mp^ •= oc^ . cos^ nt.

Therefore mp"^ : o(? = am : ab, or mp^
varies as am. The curve in which
this is the case is called b. parabola;

its two branches extend indefinitely

to the right, but only a finite portion of it is traversed by
the harmonic motion.

^"^r"

\
TO
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c^ ^
^'^^

This finite curve, then, is the orthogonal projection of

a curve on a cylinder; the axis

of which may be (1) vertical,

(2) horizontal. In case (1), the

curve is made by wrapping round

the cylinder a harmonic curve

one wave of which will go twice

round ; or, which is the same
thing, by bending into a cylin-

drical form the spindle-shaped

figure here drawn. In case (2),

we must wrap round a harmonic
curve,iwo of whose waves will go

once round; the result is some-

thing like an ellipse whose plane

is bent. The figure obtained by
looking at the first along oh or the

second along a direction making
an angle of 45° with co in a vertical plane is here given.

A series of intermediate forms is given in Thomson and
Tait's Natural Philosophy, p. 48. The equation to the
figure-of-8 motion is p = a cos {nt + ^ir) + ^ cos %it, or

p = a cos nt +^ cos (2nt + ^ir). All the intermediate forms

can be got by looking at the curve on the cylinder from
a sufiicient distance and turning it round the axis of

the cylinder. For this purpose the curve should either

be made in stiff wire or drawn on a glass tube.

Whenever two simple harmonic motions in rectangular

directions with commensurable periods are compounded
together, there is a certain relation of the phases (viz, the

equation is p = a. cos nt+^ cos mt) for which the path
resembles that on a parabola in the case just considered ;.

namely, the path is a finite portion of a geometrical curve
on which the moving point oscillates backwards and
forwards. There is also a path which resembles the

figure-of-8 in being symmetrical in regard to each of the

perpendicular lines a, /3. From a knowledge of these

two the intermediate forms may be easily inferred.

The general shape of these two forms may be obtained

by a very simple process, which will be understood from
a particular example of it. The figures on the opposite

3-2
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page represent the symmetrical curve and the cm-ve of

oscillation for the case m : w = 3 : 4. Suppose the

amplitudes of the two motions equal, so that the path

is included in a certain square ; and draw circles equal

to the inscribed circle of the square touching two of its

sides at their middle points. Then if one point goes

uniformly three times round ABCD while another goes

four times round FGH, a horizontal line through the

first point and a vertical line through the second will

intersect on the curve which is to be drawn. The con-

tacts of the curve with the sides of the square are

projections on them of the four points ABCD, forming

an inscribed square, and the three points FGH, forming
an equilateral triangle. For the symmetrical curve these

must be so disposed on their respective circles that their

projections abed and fgh shall be all distinct and sym-
metrically placed in regard to the sides of the square.

For the curve of oscillation they must be so placed that

the projections either coincide two and two or are at

the corners of the square. When the contacts are de-

termined, we must begin at any corner of the square

—

say the left-hand bottom corner. Fig. 1, and join the

nearest points c/by a piece of curve convex to the comer;
then the next two, dh, in a similar manner ; then hg

;

then ac\ but as these points are on opposite sides of the

square, the curve has a point of inflexion between them.
The symmetry of the curve will now enable us to com-
plete the figure ; or we may apply the same process,

beginning at the adjacent corner gc.

The curve of oscillation has always to go through a
corner of the square. If we fix upon the corner d, Fig. 2,

this determines the position of A'B' CD' and of FGH,
shewing that the curve also goes through the corner h,

but not through either of the other corners. This de-

termines the position oi ABCD, because their projections

are thus obliged to coincide two and two. The motion
takes place on a portion only of the geometrical curve*,
whose continuations, indicated by the dotted lines, re-

semble a parabola in shape.

* On the equations and geometrical character of these curves, see
Braun, "Ueber Liseajous' Curven," Math. Annalen, nu.

i>. 567.
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Fig. 2.

I
Examples of harmonic motion, simple and compound,

occur in the vibrations of elastic solids, the rise and fall of

the tides, the motion of air-particles when transmitting

sound, and of the ether in carrying radiations of light and
heat. The important theorem of Fourier, that every

motion which exactly repeats itself after a certain interval

of time is a compound of harmonic motions, will be proved
in the Appendix.



88 DYNAMIC.

PAllABOLIC MOTION.

It was observed by Galileo that if a body be let slide

down a smooth inclined plane, the lengths passed over

from the beginning of the motion are proportional to the

squares of the times. That is, if the body goes a length a
in the first second, then in the first t seconds it will go a

length af. It is easy to see that the lengths passed over

in successive seconds are proportional to the successive odd
numbers ; for in the nth. second the distance travelled is

an^ — a{n — iy=^a(2n — l).

Now 2n — l is the nth. odd number.

In the extreme case included in this law, when a bod}""

falls vertically in vacuo, it feills in the first second 490'4'

centimeters, or 16'1 feet.

To determine the curve of positions for this motion we
must compound it with a uniform rectilinear motion in a

direction at right angles to it. More generally, if we com-
bine with it a uniform rectilinear motion in any direction

(this is what happens with a body thrown obliquely up-
wards) we obtain a motion which is called parabolic, from
parabola, the name of the curve described.

The equation to the rectilinear motion of a body falling

vertically or down an inclined plane is evidently p = a + fy,

where a is the step to the starting point, and 7 is the step

taken by the body in the first second. Combining with
this the uniform rectilinear motion p = t^, we find for the

equation to the parabolic motion p = a + t/3 + fy.

Let ac = y, ab = /S, am = fy = f. ac, mp = t^ = t.ab;
thenp is the position of the moving point after t seconds.

And am : ac = f : 1 = mp^ : a¥; or am
varies as mp^. We have already met
Avith this property in a curve described

by compound harmonic motion. We
shall now prove that this curve (the

parabola) is a central projection of a

circle ; in fact, it is the shadow of a
circle cast on a horizontal plane by a
luminous point on a level with the highest

point of the circle.
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Let aqh be the circle, of which h is the highest point,

and a the lowest is resting on the horizontal plane ; v the

centre of projection. From q any point

on the circle draw qn perpendicular to

ah', let am be the projection of an,

pm of qn, and ap of the circular arc

aq. The line pm will not in general

be perpendicular to am, but will be
parallel to the common tangent at a
to the two curves. Then by similar

triangles, we find "?»'"'"—

pm : qn = vm : vn = ah : nh.

Now qn^ — an .nh;

therefore

pm^ : an.nh= ah^ : nh^, or pnf : a¥ = an:nh=^ am : vh.

Thus pm^ varies as am, which was to be proved.

It is clear that pm = mp', because their squares are

both proportional to am; thus the line am bisects all

chords parallel to the tangent at a. Because it has this

property in common with the diameter of an ellipse or a

circle, it is called a diameter of the parabola. We shall

now shew that a diameter may be drawn through every

point of a parabola, and that all these diameters are

parallel.

Suppose that in the motion p = a-\-t^ + f<y, the epoch

from which the time is reckoned is changed to t seconds

later. Then t, the number of seconds from the old epoch

to any instant, is greater by r than t', the number of

seconds from the new epoch to that instant, or ^ = ^' + r.

Therefore

Hence the equation is of the same form as before, except

that a and /3 are changed. The new a is of course the

step oa! ; the step aa being clearly rfi + t^j. The new ^ is

yS 4- 2t7; thus we must draw a'k equal and parallel to ah,

and then kb' = 2t . ac. The direction of a'b' is most easily
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determined by producing it backwards to t. Then

t7}i : kb' = ma : ah = T :1.

Therefore t)7i = r . kh' = 2t'^ . ac = 2am.

Now the lines a'b' and an are tangent and diameter of

the parabola, having the same properties as ab and am.

For np' : ab'^ = t'^ : 1 = an : ac,

so that np^ varies as a'n. Hence we derive the following

properties of the parabola :

—

1. If from any point a' we draw a'm parallel to the

tangent at a to meet the diameter through a, and make
at = ma, then at is the tangent to the parabola at a'.

2. If pn be drawn parallel to the tangent at any
point a of a parabola to meet the diameter through its

point of contact at n, pn^ is always proportional to an.

It is easy to shew that one of the diameters is perpen-

dicular to the tangent at its vertex. For we
can so determine t (positive or negative) that

y3 + 2T7 shall be perpendicular to 7. We
have only to draw at perpendicular, bl pa-

rallel, to ac, and then make T = bl: ac. This

diameter is called the axis, and the parabola

is symmetrical on either side of it. Thus of the parabola

drawn on p. 34, the axis is ab. A stone thrown into the

air describes approximately a parabola whose axis is

vertical.
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CHAPTER II. VELOCITIES.

THE DIEECTION OF MOTION. (TANGENTS.)

Euclid defines the tangent to a circle as a line wliich

meets it but does not cut it; and he shews that it is always
perpendicular to the radius through the point of contact.

This line may also be regarded as the final position of a
chord which moves parallel to itself until its two points of

intersection with the circle coalesce into one point. As
the foot of the perpendicular from the centre is always
midway between these two points, it must coincide with
them when they coincide together.

We may find the tangent to an ellipse or parabola

at any point by means of the remark already made, that

the projection of the tangent to a curve is tangent to the

projection of the curve. Since, in the circle, the triangles

CMP, CPT&re similar, where PM is drawn perpendicular

to CT; we have CM : CP= CP : CT, or CM. CT= CA\
It follows that in the ellipse also, if we draw the tangent

pt to meet the diameter aa', and pm parallel to the con-

jugate diameter ch, we must have cm.ct= cd^. Moreover,
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in the circle TA : AM= TA' : MA'. For, producing P2r
to meet the circle again at P', we know that the angle

TPA = AP'P= APM, or PA bisects the angle TPM. So
also PA' bisects the external angle MPT\ Therefore

TA : AM=TP : PM= TA' : MA'.

This also then is true for the ellipse

;

ta : am — ta : ma or am : ma' = at : at.

Thus each of the two segments aa', mt, divides the other

internally and externally in the same ratio. Four points

so situated are called a harmonic range, because the lengths

ta, tm, ta' are in harmonic progression.

The central projection of a harmonic range is also a
harmonic range. Let abed, four points on a straight line,

be central projections ofABGD from ,,

a point V. Twice the area of the tri-

angle avh is equal to the rectangle

ah , vm and also to va .vb . sin avh.

So also cd.vm = vc. vd sin cvd. ^ ,„

Hence

ab.cd. vrri^ = sin avh . sin cvd . va . vb . vc . vd.

Similarly

acid, vrr^ — sin avc . sin bvd . va . vb . vc . vd.

Therefore

ab .cd : ac.hd= sin avh . sin cvd : sin avc . sin hvd.

The ratio ab . cd : ac .bd is called a cross-ratio of
^
the

four points abed (ratio of the ratios in which ad is divided

by b and c). And sin avb . sin cvd : sin avc . sin bvd is called

a cross-ratio of the four lines va, vb, vc, vd. Hence as the

cross-ratio of the points abed is equal to the corresponding

cross-ratio of the lines va, vb, vc, vd, it is also equal to the

corresponding cross-ratio of the points ABGD. Thus a

cross-ratio is unaltered by central projection. But the four

.points are harmonic when AB . CD = AD.BG or when
AB . GD : AD .BG=1. In this case ab.cd: ad. be is also

unity, or abed form g, harmonic range.
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Now the parabola being a central projection of a circle,

the points T, A, M,A are projected

into t, a, in and a point at an infinite

distance, say a. Since a is at an in-

finite distance ta : ma = 1. But since

the four points form a harmonic

range, ta : am = ta' : ma = 1,

or ta = am, as we before proved by
another method. This determines

the tangent to a parabola at any
point jj.

To determine the tangent to the harmonic curve, we
must remember that it is formed by unrolling an ellipse

from a cylinder. Let ac be the ellipse, ab its orthogonal

projection, the circular section of the cylinder by a plane

Fig. 1. Fig. 2. Fig. 3.

perpendicular to the axis, pni perpendicular to that plane,

pt and mt tangents to the ellipse and circle respectively,

at tangent to both of them. A plane touching the cylin-

der along the line pm will clearly cut the planes of the
ellipse and circle in tangents to them at p and m, which
must meet at t on at the line of intersection of those

planes. The second figure represents the circle ab in the

plane of the paper, and the third figure the result of un-
wrapping one-half the ellipse. Now

mp : be (fig. l) = lk : bc = al : db (fig. 1 or 2).

Therefore (since mp = bn, fig. 3)

bn : bc = al : ab (fig. 2),

and consequently

2qn : be = 2lm ; ab = lm : om= rm : tin — al : tm.
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That is al : mt = Sn^ : he, but pm : al = hc : ah, there-

fore

pm : mt = 2nq : a6 (of fig. 2) =7rnq : a6 (of fig. 3),

since a6 (fig. 3) = Jtt . a5 (fig. 2).

Thus pm : mt^v .nq : a&.

Hence the inclination of the tangent is greatest when
iiq is greatest, or when n is the centre of be. The point

of greatest inclination is called a point of inflexion, be-

cause the curve stops bending upwards and begins to bend
downwards.

EXACT DEFINITION OF TANGENT.

We have regarded the tangent at a point a of a curve

as the final position of a line cutting the

curve in two points p, q, when the line is

made to move eo that j), q coalesce at a.

This method indeed will always find the tan-

gent when there is one. But we have seen

that when the curve has a sharp point at a
there is properly no tangent at the point a.

In the case of a sharp point in the curve, we may
draw a line ab through it, and then

turn this line round until b moves
up and coalesces with a. The final

position at of this line may be

called the tangent up to a. Simi-

larly if we draw a line ac cutting

the curve on the other side, and
tuna this round until c moves up
to a, the final position at' of this

line may be called the tangent on from a. So that

we have a tangent up to a and a tangent on from a, but
no tangent at a, properly so called.

The final position of ah when 6 has moved up to a, is

however not so well defined in this case as when there

is no sharp point. For then if we turn the line a little

too far round a, it will cut the curve on the other side.

But when there is a sharp point, there are intermediate
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positions between at and at', such as pq, in which the

line does not cut the curve on either side of a.

To improve this definition, we observe that the true tan-

gent at has the property that if we turn it ever so little in

the direction ab it will cut the curve

between a and b. Hence, when such

a line ab has been drawn, it is always

possible to find a point sc on the curve

such that ax shall lie between at and
ab ; or (which is the same thing) so that

ax shall make with at an angle less than that which ab

makes. This is very obvious in the case of the circle,

for the angle bat = baa, and xat = xa'a ; so that we have
only to draw through a a line ax making with a a a less

angle than ab makes.

This rule may be stated as follows : If at is the tangent
at the point a, it is possible to find a point x on the curve
near to a so that the angle xat shall be less than any
proposed angle, however small. For let tab be the pro-

posed angle ; however small it is, the line ab must cut

the curve if at is a tangent, and then we have only to take
a point X between a and b.

The proof fails, however, when the curve is wavy.
In the figure we can take a point

SB between a and b so that ax does

not lie between at and ab. This

only means that we have begun too

far away from a. If we take b somewhere between a and

the nearest point of inflexion c, the proof of the rule will

hold good.

So guarded, the rule amounts to Newton's criterion for

a tangent. Even this criterion, however, is baffled by some
curves which can be conceived. Suppose two circles

to touch one another at the point

a, and between these circles let us

draw a wavy curve, like the har-

monic curve, except that the

waves become smaller and smaller

as they approach a; and let us

suppose the shape of the waves,

that is, the ratio of their height
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to their length, to be kept always the same. Then it

will be impossible to take b so near to a that there shall

be no point of inflexion between them. Also it is clear in

this case that there is no real tangent at a; for however
near we get to a, the direction of the curve sways from
side to side through the same range.

If, however, the waves are so drawn that the ratio

of their height to their length

becomes smaller and smaller as

they approach a, so that they

get more and more flat without

any limit, then although the

proof of the rule fails as before,

there is a real tangent at a,

namely, the common tangent at

to the two circles.

In both these cases our criterion for a tangent is

satisfied ; that is to say, there is a line at such that by
taking a point x on the curve near enough to a, the

angle xat can be made less than any proposed angle. Yet
in one of these cases this line at is a tangent, and in

the other it is not. We must therefore find a better

criterion, which will distinguish between these cases.

The tangent to a circle has the following property.

If we take ani/ two points ^ and g' between a and b, the

chord pq makes with the tangent

at a an angle less than aoh. For
the angle between j)q and at is

equal to aom, where om is perpen-

dicular to pq. Let pq be called

a chord inside ah, even if p is

at a or 5' is at h. Then we can
find a point h such that every chord inside ah makes
with at an angle less than a proposed angle, however
small. For we have only to draw the angle aoh a little

less than the proposed angle.

Now the second of our exceptional curves, that which
really has a tangent, has also this property, that we can
find a point h so near to a that every chord inside ah
shall make with at an angle less than a proposed angle.
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however small. For since the waves get flatter and
flatter without limit, the tangents at the successive points

of inflexion make with at angles which decrease without
limit. We have then only to find a point of inflexion

whose tangent makes with at an angle less than the

proposed angle, and take h at this point or between it

and a.

But the first curve has not this property, for the

inclinations of the tangents at the points of inflexion

are always the same, and any one of these counts as a

chord inside ah.

We shall now therefore make this definition :

When there is a line at through a point a of a curve

having the property that, any angle being proposed,

however small, it is always possible to find a point h

so near to a on one side that every chord inside ah makes
with at an angle less than the proposed angle ; then

this line at is called the tangent of the curve up to the

point a on that side.

When there are tangents up to the point a on both

sides, and these two are in one straight line, that straight

line is called the tangent at a. In this case the curve

is said to be elementally straight in the neighbourhood

of a. It has the property that the more it is magnified,

the straighter it looks.

Going back to our first and simpler definition of a
tangent, as the final position of a line pq which is made
to move so that p and q coalesce at a, we see that not

only does it always find the tangent when there is one,

but that when there is not, the final position of pq will not

be determinate, but will depend upon the way in which

p and q are made to coalesce at a. When therefore this

method gives us a determinate line, we may be sure that

that line is really a tangent.

VELOCITY. UNIFORM.

The problem which we have now to consider is the

following :—Suppose that we know the position of a point
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at every instant of time during a certain period, it is

required to find out hoio fast it is going at every instant

during the same period. For example, in the simple

harmonic motion described in the last chapter, we know
the position of the point m by geometrical construction

;

namely we determine the position of p by measuring an
arc op on the circle proportional to the time, and then we
draw a perpendicular pm to the diameter aa. The pro-

blem is to find out how fast the point m is moving when
it is in any given position. The rate at which it is

moving is called its velocity.

Let us now endeavour to form a clearer conception of

this quantity that we have to measure ; and for this pur-

pose let us consider the simplest case, that of uniform
motion in a straight line. We say of a train, or a ship, or

a man walking, that they go at so many miles per hour

;

of sound, that it goes 1090 feet per second ; of light, that

it goes 200,000 miles per second. These statements seem
at first to mean only that a certain space has been passed

over in a certain time ; that the man, for instance, has in

a given hour walked so many miles. But because we
know that the motion is uniform, we are hereby told not

only how far the man walks in an hour, but also how far

he walks in any other period of time. In walking on a
French road, for example, it is convenient to walk about

six kilometers per hour. Now this is one kilometer per

ten minutes, and that is the same thing as one hectometer

per minute. In what sense the same thing ? It is not

the same thing to walk a hectometer in one minute as it

is to walk six kilometers in one hour. But the rate at

ivhich one is moving is the same during the minute as it

is during the hour. Thus we see that to say how fast a

body is going is to make a statement about its state of

motion at any instant and not about its change of position

in any length of time. The velocity of a moving body is

an instantaneous property of it which may or may not

change from instant to instant ; and the peculiarity of

uniform motion, in which equal spaces are traversed in

equal times, is that the velocity remains constant through-

out the motion ; a body which moves uniformly is always

going at the same rate.
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But although this rate is a property of the motion
which belongs to it at a given instant, we cannot measure
it instantaneously. In order to find out how fast you are

walking at a particular instant, you must keep on walking
at that same rate for a definite time, and then see how far

you have gone. Only, as we noticed before, it does not

matter what that definite time is. Whether you find that

you have walked one hectometer in a minute, or one kilo-

meter in ten minutes, or six kilometers in an hour, the

velocity so measured is the same velocity. Now for com-
paring velocities together, it is found convenient to refer

them all to the same interval of time. Which goes faster,

sound at 1090 feet per second, or a molecule of oxygen in

the air at seventeen miles a minute? Clearly we must
find how far the molecule of oxygen would go in a second,

and compare that distance with 1090 feet. For scientific

purposes the second is the period of time adopted in

measuring velocities ; and we may say that we know the

rate at which a thing is moving when we know how
far it would go in a second if it went at that same rate

during the second.

A velocity, then, is measured by a certain length;

namely, the distance which a body having the velocity

during a second would pass over in that second. It may
therefore be specified either graphically, by drawing a line

to represent that length on a given scale, or by nu-
merical approximation. When a velocity is described as

so many centimeters per second it is said to be expressed in

absolute measure. Thus the absolute unit of velocity is one

centimeter per second. The absolute measure of six kilo-

meters per hour is 16Gf. More generally we may say

that the unit of velocity is one unit of length per unit of

time.

This last statement is sometimes expressed in another

way. Let [F] denote the unit of velocity, [Zy] the unit of

length, and [T] the unit of time; then [ F] = kq . Here

the word per has been replaced by the sign for divided

by: now it is nonsense to say that a unit of velocity is a

unit of length divided by a unit of time in the ordinary

c. 4
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sense of the words. But we find it convenient to give a

new meaning to the words " divided by," and to the

symbol which shortly expresses them, so that they may
be used to mean what is meant by the word per in the

expression " miles per hour." This convenience is made
manifest when we have to change from one unit to an-

other. Suppose, for instance, that we want to compare

the unit of velocity one centimeter per second with another

unit, one kilometer per hour. We shall have

^ ^ .^ one centimeter
first unit =

second unit =

one second

one kilometer

one hour '

consequently

second unit _ one kilometer one second 100,000

first unit one centimeter * one hour 3600

= 27-7.

We might have got to the same result by saying that one
kilometer per hour

_
is 100,000 centimeters per 3600

seconds, that is, 27'7 centimeters per second. Hence if

we give to the symbol of division this new meaning, and
then treat it by the rules applicable to the old meaning,
we arrive at right results ; and we save ourselves the
trouble of inventing a new symbol by using the old one
in a new sense.

Another way of expressing the equation [T^ = [Z/] : [T]
is to say that velocity is a quantity of dimensions 1 in

length and — 1 in time.

Velocity is a directed quantity; and therefore is not
fully specified until its magnitude and direction are both
given. The velocity of translation of a rigid body is

adequately represented by a straight line of proper length

and direction drawn anywhere. Consequently it is a vector

quantity, in the sense already explained.

In the uniform rectilinear motion p = a+ t^, the step

taken in one second is /3, which is therefore the velocity.

When the step op from a fixed point o to the moving
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point p is denoted by p, the velocity of p is denoted by p.

Thus if

p = a + t^, then p = /S.

In the uniform circular motion

p = ai cos (nt + e) + aj sin (nt + e),

the distance travelled in one second is na,

and the direction of the motion is pt
Hence if oq be drawn parallel to pt, the

velocity is represented by n . oq. Now oq

is what op will become after a quarter

period ; that is, after the angle nt + e has

been increased by a right angle. Thus

oq — ai cos {nt+ e + ^tt) + cy sin {nt + e + ^ tt)
;

and

p = n.oq = nai cos (wi + e + 1 tt) + naj sin (nf + e + ^tt).

The rule to find p from p is therefore, in the case of uni-

form circular motion : multiply by n, and increase the

argument by | tt,

VELOCITY. VARIABLE.

To make more precise the idea of a velocity which
varies continuously with the time, let us consider the

case of two parallel lines of rail, on one of which a train

starts from rest and gradually increases in speed up to

twenty miles an hour, while on the other a train runs

uniformly in the same direction at 10 miles an hour. We
will suppose the second train to be so long that a traveller

in the first train has always some part of it immediately

opposite to him. At starting, the uniform train will ap-

pear to this traveller to be gaining on him at the rate of

10 miles an hour; but as his own train gets up speed,

this rate of gaining will diminish. At the end, when the

variable train is going 20 miles an hour, the uniform train

will be losing 10 miles an hour. There must have been
some moment between these two states of things at which

the uniform train was seen to stop gaining and to begin

4—2
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to lose. At that moment the variable train was going 10
miles an hour.

In the same way if we suppose the uniform train to go
at any other velocity less than 20 miles an hour, there will

be an instant at which it will appear to a traveller in the

variable train to stop gaining and to begin to lose. This

will be the instant at which the variable train having
hitherto been travelling at a less velocity, just acquires

the velocity of the uniform train, and then, acquiring a
still greater velocity, proceeds to gain upon it.

When then we say that at a certain instant a train is

going V miles an hour, we mean that a train moving uni-

formly V miles an hour on a parallel line of rails would
appear from the first train to stop. If the velocity of the

variable train is continually increasing or continually de-

creasing, the imiform train will appear to reverse its mo-
tion ; but if the velocity after increasing up to that point

began to decrease, or after decreasing began to increase,

the uniform train would seem to stop momentarily and
then go on in the same direction.

By these considerations we have reduced the case of

an instantaneous velocity of any magnitude to the case of

stoppage or zero velocity, which can be readily observed

and conceived.

In the motion of a falling body, for example, we have
s = fa, where a is the distance fallen in the first second,

and s the distance fallen in the first t seconds. Suppose
another body to move uniformly downwards with velocity

v; in t seconds it will have passed over a distance s^ = vt.

Thus the distance between the two bodies iss^— s = vt — af.

Therefore 4<a{s^ - s) = 4<avt - 4aV =:v^-{v- 2at)\ This

quantity continually increases so long as u — 2at diminishes

by the increase of t, that is, until v = 2at ; then it begins

to diminish again. Hence at the moment when v = 2at,

or t = v : 2a, the uniformly moving body stops gaining on

the falling body and begins to lose. Consequently the

velocity of the falling body at the time t is 2at. Or if

s = af, then s = 2at.

It appears therefore that a body falling freely in vacuo

4ias at the end of the. first second a velocity of 32'2 feet
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per second, at the end of the next twice that velocity,

and so on ; a velocity of 32 '2 feet per second being added
to it in every second.

The problem offinding the velocity of a moving point is

the same as that of drawing a tangent to its curve of posi-

tions. Let qpq be the curve of

positions of a moving point k, and
let rpr be the tangent to it at p.
Let a point I move so as to have
this tangent for its curve of posi-

tions ; then since it moves over a

distance equal to 7np in a time
represented by tm, its velocity is

represented by mp : tm. Now as the figure is drawn, the

curve being wholly on the upper side of the tangent, the

point k is always above I, because q is above r ; but if we
suppose the line qr to move parallel

to itself horizontally, r will gain upon

q until it comes up to it at p, and
then q will gain upon r. Therefore

the same is true of their orthogonal

projections; I will gain upon k, until

it comes up with it at the point Ik

;

after that it will lose. At this point, consequently, the

velocity of k is equal to that of ^ ; or it is mp : tm. Hence
this rule: to find the velocity of the point k in any
position, draw the tangent pt at the corresponding point

of the curve of positions ; then, pm being parallel to ok,

the velocity is mp : tm.

Now the tangent at any point p of the curve of posi-

tions, if there is one, is found by moving the chord joining

two points of the curve until these two points coalesce at^.

We shall now shew how to translate this rule so as to

derive from it a method of finding the velocity without

drawing the curve of positions.

The mean velocity of a moving point during any in-

terval is that uniform velocity with which the point would
make the same step during the interval that it has ac-
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tually made. If a body gets from a
to b, by any path, with any variation

of speed, in t seconds, its mean velo-

city during the interval is ab : t The
direction of it is the straight line ab. When the motion
is rectilinear, the mean velocity is of course simply the

distance traversed divided by the time of travelling.

Now let k, I be two positions of a moving point, q,

r the corresponding points of the

curve of positions, qm, rn vertical.

Then mn represents the time of

travelling from k to I; and conse-

quently the mean velocity during

this interval is represented by kl : ^ ^

mn. But this is the uniform velo-

city whose curve of positions is the chord qr. Hence the

chord joining tiuo points on the curve of positions is itself

the curve ofpositions of the mean velocity during the corre-

sponding interval. If the chord cuts the line omn in t

the mean velocity is mq :tm.

The tangent at a point p is obtained by moving the

chord gr till its ends coalesce at p ; and the tangent is

curve of positions of the instantaneous velocity correspond-

ing to the point p. Hence the instantaneous velocity at

any instant {when there is one) may be obtained from the

tnean velocity of an interval by making both ends of the

interval coincide with that instant. This appears to be

nonsense, because there is no interval when the two ends

coincide. But an example will shew what is the meaning
of the rule.

Let us take again the case of a falling body, s—af;
it is required to find the instantaneous velocity at the

time t. In the interval between ^^ seconds a,nd t^ seconds

after the beginning of the time, the distance travelled is

Sg — 5^ = at.^ — at^ ; therefore

s — s t^ —t'
mean velocity = v—-^ = a ^ j- — a{t^-\- 1.).

Thus the mean velocity in the interval from f^ to t^ is
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a [t^ + 1^. .This becomes the instantaneous velocity at

the time t when both ^, and t^ coincide with t. But then
it becomes 2at, the value we have already found for it.

And this result is clearly independent of the way in

which tj^ and t.^ approach the value t.

To extend this result, suppose the distance travelled

to vary as the w*** power of the time, where n is an in-

teger ; that is, s = at". Then we shall have in the interval

mean velocitv = T''

—

r = ci'-^.

(the division here made may be readily verified by
multiplying the result by t^ — t^). Now the quantity

in brackets consists of n terms, each of which becomes
f*~^ when we make ^^ and t.^ each equal to t. Thus the

instantaneous velocity is naf'~^. Or we may now say

that when s = ai", then s = naf~^. The rule for getting

s from s in this case is : multiply by the index of t, and
then diminish that index by 1.

Next suppose that w is a commensurable fraction, the
quotient ofp by q, where p and q are integers. Suppose
that 2 is a quantity such that z'^=t, then f = z^'^ = z^

since p = qn. Hence we have s = af = ar/, while t = 2f.

Consequently in the interval t^ — t^

mean velocity = ^—^ = a -\ ^^

"'zf' + z,^z,+ ... + z,^"

where the factor z^ — z^ has been divided out of the

numerator and denominator of the fraction. Making
z^ and z^ both equal to z, we have

pz^~^
instantaneous velocity = a —^i = na.:^''.



66 DYNAMIC.

Now 2" = ^ and £«=<, therefore z^~^ = t'~\ The velocity

is therefore again s = naf^^. It appears therefore that

the rule stated above applies equally whether n is an

integer or a commensurable fraction.

The proof that the same rule holds good when n is

negative is left as an exercise to the reader.

We may now describe shortly the process for finding

s when s is given in terms of t. In the fraction

substitute the values of s^ and s^ in terms of t^ and t^
;

strike out any common factors from numerator and de-

nominator : then omit the suffixes.

EXACT DEFINITION OF VELOCITY.

The same difficulties occur in regard to velocities that

we have already met with in regard to tangents. When
a billiard-ball is sent against a cushion and rebounds,

its velocity seems to be suddenly changed into one in

another direction. If this were so, we could not speak

of a velocity at the instant of striking ; though we might
speak of a velocity up to that instant and a velocity

on from it. Such an event would be indicated by a
sharp point in the curve of positions, so far as sudden
change in the magnitude of the velocity is concerned,

or by a sharp point in the path of the moving body, in

case of sudden change in direction. And still greater

difficulties may be conceived, when the curve of positions

is like the curves on p. 45, 46, with an infinite number
of waves.

It is true that there is some reason to believe that

sudden changes of velocity never actually occur in nature;

that the billiard-ball, for example, compresses the cushion,

and while so doing loses velocity at a very rapid rate,
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yet still not suddenly ; and acquires it again as the

cushion recovers its form. However, we cannot deal

directly with such motions as occur in nature, but only

with certain ideal motions, to which they approximate

;

and in these ideal motions such difficulties may occur.

It is therefore necessary to find a criterion for the exist-

ence of a velocity at a given instant. In this we shall

follow our previous investigation in regard to tangents.

Our first criterion was this : If ta is the tangent up
to a point a, it is possible to find a point x on the curve
so that the angle xat shall be
less than a proposed angle, how-
ever small. Suppose the curve

to be curve of positions of some
rectilinear motion. Take a hori-

zontal line ou, one centimeter

long ; draw uv vertical, ov parallel to ta, om parallel to

xa. Then the angle mov is equal to xat. Also uv is

the instantaneous velocity corresponding to the point

a in the curve, and um is the mean velocity in the in-

terval corresponding to xa. If the angle xat or, which
is the same thing, the angle mov, can be made less than
any proposed angle, it follows that mv can be made
less than any proposed length. Therefore, if uv be the

velocity up to a certain instant, it is possible to find an
interval ending at that instant in which the mean velocity

shall differfrom uv less than by a proposed quantity, how-
ever small. That is, by reckoning the mean velocity

in a sufficiently small interval, we can make it as close

an approximation as we like to the instantaneous velocity.

To define the velocity on from an instant, we must
take an interval beginning at that instant.

The more accurate criterion of the tangent is that

X can be so taken that every chord inside ax shall make
with at an angle less than a proposed angle. To express

the corresponding criterion for a velocity, let us speak
of the mean velocity in an interval of time included

within a certain interval as a mean velocity inside that

certain interval. Then the criterion is that if v is the

velocity up to a certain instant, it is possible to find an
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intei^al ending at that instant such that every mean
velocity inside it shall differfrom v less than by a proposed
quantity, however small.

This criterion applies to variable velocity in rectilineal

motion in the first instance ; but it clearly extends to

determination of the magnitude of the velocity in curvi-

linear motion, when that has been represented upon a
straight line in the manner used for determining its

curve of positions. But we may so state the criterion

as to give a direct definition of velocity as a vector in

all cases of motion.

Let ha be a portion of the path of a moving point,

and p, q two positions either intermediate between b

and a, or coinciding with either of

them. Let the mean velocity from

2) to q (viz. the step pq divided by
the time of taking it) be called a
mean velocity inside ha. Let ov

represent the velocity up to a in

magnitude and direction, and ora

the mean velocity in pq. Then it

is possible to choose b so that every

mean velocity inside ha shall differ

from ov less than by a proposed quantity, however small.

We say that om differs from ov by the step mv, and it

is meant that mv is shorter than a proposed length.

When there is a line ov having this property, there

is said to be a velocity up to the point a, and ov is that

velocity. The velocity 07i from a is defined in a similar

manner. When these two are equivalent (have the same
magnitude and direction) we speak of ov as the velocity

at a. The motion is then said to be elementally uniform
in the neighbourhood of a.

The criterion may be illustrated by applying it to

the case s = ar. Let t^, i^, t^, t be four quantities in

ascending order of magnitude ; we propose to shew that

nat"'^ is the velocity at the time t. We know that the

mean velocity between ^, and t^ is

a{tr+trt,+...+t.n.
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The quantity between brackets consists of n terms, eacli

of which is greater than i^""^ and less than r~\ Hence
the mean velocity is greater than nat^~^ and less than
nat~^. The difference between these can evidently be
made smaller than any proposed quantity by taking

t^ sufficiently near to t. But the mean velocity from

f, to t^ differs still less from naf'^ than nat"~^ does.

Hence it is possible to choose an interval, from <„ to t,

such that the mean velocity in every interval inside it,

from i, to t^, shall differ from naf~^ less than by a pro-

posed quantity. Therefore naf^'^ is the velocity up to

the instant t. It may be shewn in the same way that

it is the velocity on from that instant. Hence the motion
is elementally uniform and naf~^ is the velocity at the

instant t.

COMPOSITION OF VELOCITIES.

A velocity, as a directed quantity, or vector, Is re-

presented by a step ; i.e., a straight line of proper length

and direction drawn anywhere. The resultant of any
two directed quantities of the same kind may be defined

as the resultant of the tivo steps which represent them.

This definition is purely geometrical, and it does not

of course follow that the physical combination of the

two quantities will produce this geometrical resultant.

In the case of velocities, however, we may now prove the

following important proposition.

When two motions are compounded together, the velocity

in the resultant motion is at every instant the resultant

of the velocities in the component motions.

Let oA, oB be velocities in the component motions

at a given instant, oG their resultant. Let also oa, oh

be mean velocities of the component motions during a
certain interval ; then we know that their resultant oc is

the mean velocity of the resultant motion during that in-

terval, because the mean velocity is simply the step taken
in the interval divided by the length of the interval, and
the step taken in the resultant motion is of course the

resultant of the steps taken in the component motions.
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Now because oA and oB are vc4ocitios in the com-
ponent motions at a certain instant, we know that an
interval can be found, ending at that

instant, so that the mean velocities

oa and ob, for every interval inside

it, differ from oA, oB respectively

less than a proposed quantity; so,

therefore, that Aa and Bh are al-

ways both less than the proposed

quantity. Now Co is the resultant

of Aa and Bh, and the greatest possible length of Cc
is the sum of the lengths oi Aa and Bh. We can secure,

therefore, that Cc shall be less than a proposed quantity,

by making Aa and Bh each less than half ih^i quantity.

We can therefore find an interval ending at the given

instant, everj'- mean velocity inside which differs from o C
less than by a proposed quantity, however small. Con-
sequently o(7 is the velocity of the resultant motion
up to the given instant.

It may be shewn in the same way that if oA and
oB are velocities in the component motions on from
the given instant, then oO is the velocity in the resultant

motion on from the given instant; and therefore that

when they are velocities at the instant, oC is the velocity

at the instant in the resultant motion.

It is easy to shew in a similar manner that wlien a
moving point has a velocity in any 2)ositi07i, its parallel

jyrojection has also a velocity in that position, which is the

'projection ofthe velocity ofthe moving
point. For let F" be the velocity

of the moving point at a certain

instant, OM its mean velocity in a

certain interval, and let ov, om be

their projections. Then the greatest

possible ratio of vm to VM is that

of the major axis of an ellipse,

which is the parallel projection of a circle in the plane

OVM, to the diameter of that circle. In order therefore,

to make vm less than a proposed length, we have only to

make VM less than a length which is to the proposed
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one as the diameter of the circle to the major axis of

its projection. Hence an interval can be taken such
that the mean velocity of the projected motion for every

included interval shall differ from ov less than by a

proposed quantity; or ov is the instantaneous velocity

of the projected motion.

For an example of the last proposition, we may con-

sider the simple harmonic motion, which is an orthogonal

projection of uniform circular

motion on a line in its plane.

The velocity of p is na where
a is the radius of the circle,

and it is in the direction tp.

The horizontal component of

this is the velocity of m.
The horizontal component is

- na cosptm = — na sin aop

= — na sin {nt+ e)

= wa cos (?ii + 6 + ^tt).

Hence if s = a cos {nt + e),

we find s = na cos {nt + e + ^tt),

and the rule is the same as in circular motion. The
velocity is evidently =n.pm, by which representation

the changes in its magnitude are rendered clear. The
same result may be obtained by means of the tangent to

the harmonic curve, p. 43.

The velocity in elliptic harmonic motion may be

found either by composition of two simple harmonic

motions, or directly by projection from the circle. We
thus find that when

/3 = a cos (nt + e) + /9 sin (nt + e),

then p = ncL cos {nt + e + |7r)+ n/3 sin (nt + e + ^tt),

or the rule is the same as in the last

case or in uniform circular motion.

The result may also be stated thus :

the velocity at the point p is n times

oq the semiconjugate diameter.
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In the parabolic motion p = a + t^ + fy we may now
see that ^^^^^ty.

And in general if

p = a + t^+ f'7+ i'5-i ...+ fV,

then we shall find

p= /8 + 2«7 + SfB + ... + nt"-' v,

the rule being to multiply each term hi/ the index of t and
then reduce this index by unity. Thus we can always
find the velocity when the position-vector is a rational

intoOT-al function of t.

FLUXIONS.

A quantity which changes continuously in value is

called a fluent. It may be a numerical ratio, or scalar

quantity (capable of measurement on a scale) ; or it

may be a directed quantity or vector ; or it may be
something still more complex which we have yet to

study. In the first case the quantity, being necessarily

continuous because it changes continuously, can only

be adequately specified by a length drawn to scale, or

by an angle ; and we may always suppose an angle to

be specified by the length of an arc on a standard circle.

Let one end of the length which measures the quantity

be kept fixed, then as the quantity changes the other

end must move. The velocity of that end is the rate of
change of the quantity. Thus we may say that water

is poured into a reservoir at the rate of x gallons per

minute. Let the contents of the reservoir be represented

on a straight line, so that every centimeter stands for

a gallon; and let the change in these contents be in-

dicated by moving one end of the line. Then this end
will move at the rate of x centimeters per minute. If

to is the number of gallons in the reservoir, it is also

the distance of the moveable end of the line from the
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fixed end, and the velocity of this moveable end is there-

fore w. Thus we have w^x.

This rate of change of a fluent quantity is called

its fiuxion, or sometimes, more shortly, its fiux. It

appears from the above considerations that a flux is

always to be conceived as a velocity ; because a quantity
must be continuous to be fluent, must therefore be
specified either by a line or an angle (which may be
placed at the centre of a standard circle and measured
by its arc) and rate of change of a length measured on
a straight line or circle means velocity of one end of it

(if the other be still) or difference of velocity of the two
ends.

The flux of any quantity is denoted by putting a dot
over the letter which represents it.

If a variable angle aop be placed at the centre of

a circle of radius unity, and the leg oa be kept still ; the
velocity of p will be the flux of the

circular measure of the angle (since

ap : oa = circular measure, and oa = 1)

.

This is called the angular velocity of

the line op. When the angular velocity

is uniform, it is the circular measure of

the angle described in one second.

When one end of a vector is kept still, the flux of

the vector is the velocity of the other end. Thus if p
represent the vector from the fixed point

to the moving point p, p is the velocity

of p. But when both ends move, the

flux of the vector is the difierence of their

velocities. Thus if

<r=ab = ob — oa=^ — a,

then cr = /8 — a.

The rate of change of the vector ab is the "

velocity of b compounded with the re-

versed velocity of a.
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DERIVED FUNCTIOXS.

When two quantities are so related, that for every value

of one there is a value or values of the other, so that one
cannot change "without the other changing, each is said to

be a, function of the other. Thus every fluent quantity is

a function of t, the number of seconds since the beginnino-

of the time considered. For example, in parabolic motion,

the position-vector p = a + t^ + fry is a function of the

time t. Here the function is said to have an analytical

expression of a certain form, which gives a rule for calcu-

lating p when t is known. A function may or may not
have such an expression.

A varying quantity being a certain function of the

time, its flux is the derived function of the time. Thus if

p = a + t^ + fy, we know that p = /3 + 2ty. Then /3 + 2ty

is the derived function of a+ t^ + fy. When a function

is rational and integral, we know that the derived function

is got by multiplying each term by the index of t, and
then diminishing that index by 1. We proceed to find

similar rules in certain other cases.

The flux of a sum or difference of two or more quanti-

ties is the sum or difference of the fluxes of the quantities.

This is merely the rule for composition of velocities.

Flux of a product of two quantities. Let p, q be the

quantities, and let p^, q^ and p^, q^ be their values at

the times t^ and t^ respectively. Then we have to form

the quotient Pj^'j—pg (^2 : t^ — t^, cast out common factors

i'rom numerator and denominator, and then omit the

suffixes. Now

t,-t, t,-t,
"*

t,-t, ^H^-tJ t.-t.'i'^'

but when we cast out common factors and omit the

suffixes from the latter expression, it becomes pq+pg.
Thus the flux of a product is got by multiplying each

factor hy the flux of the other, and adding the results.



FLUX OF PRODUCT AND QUOTIENT. 65

This is equally true when both the factors are scalar

quantities, and when one is a scalar and the other a
vector. We cannot at present suppose both factors to be
vector quantities, because we have as yet given no mean-
ing to such a product.

When both factors are scalar, this result may be written

in a different form. Let u =pq, then u =^p(i + pq^- Divide

by u, then

u p q'

Let now v =pqr = ur, then we find

V u r p a r

V u r p q 7^

therefore v = pqr + pqr + 2Jqr

;

and it is clear that this theorem may be extended to any
number of factors.

Flux of a quotient of two quantities. Let ^ : g be the

quotient ; then we have

1 \^Pi-P2 „.9r-^]

and the latter expression, when we cast out common
factors and omit the suffixes, becomes pq—pq '

f-
If we

write u=p : q, then u= pq—pq : q\ or dividing by u,

that is multiplying by q and dividing by 2^, we find

u _p q
u p q*

from which a formula for the quotient of one product by
another may easily be found.

We might of course use any other letter instead of t to

represent the time ; and when an analytical expression is

c. 6
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given us, involving two or more let-

ters,we may find its derivedfunction

in regard to any one of them. Thus
of the quantity u = a? \- hy^ + ^xy,

if X represents the time, the derived

function is ^x + 3^ ; but if y repre-

sents the time, the derived function

is lOy + 3a;. If we suppose x and y to be horizontal aud
vertical components of a vector op = xi + yj, then for every

point -p in the plane there will be a value of x, a value of

y, and consequently a value of m, = a^ + 5^* + 3a;y. If we
make the point ji move horizontally with velocity 1 centi-

meter per second, then x will represent the time, and y
will not alter ; so that u will be 2a;+ 3y. This is called

the flux of u with regard to x, or the x-Jlux of u ; and it is

denoted by 3^m. Similarly if we make p move vertically

with the unit velocity, x will be constant, and y will

represent the time, so that u will be 3a; + lOy ; this is

called the flux of u with regard to y, or the ?/-flux of w,

and is denoted by 3„w. The characteristic 9 may be sup-

posed to stand for derivedfunction.

We may now prove a very general rule for finding

fluxes, namely one which enables us to find the flux of a
function of functions. Let x and y be two variable quan-

tities, and let it be required to find the flux of u which is

a function of a; and y; this is denoted thus: u=f{x,y).
The method is the same as that used for a product. We
find

t^, - u^ _/t^i > -Vi^ -/K> .Va)

_/K>yi)-/K>.yt) I

/('^2>yi)-/(^a>ya)
t,-t,

"^
t,-t,

^ ^r^^ f{^t'!/i)-A^2'yi) ^ 2/1-2/2 /K>.vO-./K'?a)

*i-*2' ^1-^2 ^1-^2* 3/1-2/2

and when we strike out common factors and omit the

suffixes in this last expression, it becomes xd,f+yd„f]
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•where /has been shortly written instead of /(or, y). Or,

substituting u for/, we have the formula

u = xd^u + y'dyU.

HODOGRAPH. ACCELERATION.

If a straight line ov be drawn through a fixed point o,

to represent in magnitude and direction at every instant

the velocity of a moving point p, the point v will describe

some curve in a certain manner. This curve, so described,

is called the hodograph of the motion of p. {phov 'ypd<pei,

it describes the way.)

Thus in the parabolic motion p = a + t/3 + fy, we have
ov = p = ^ + 2ty. Hence we see that the point v moves
uniformly in a straight line. The
hodograph ofthe parabolic motion,

then, is a straight line described

uniformly. Let ab be the initial

velocity; draw through h a line

parallel to the axis of the para-

bola. Then to find the velocity

at any point p, we have only to

draw av parallel to the tangent

at^; the line av represents the

velocity in magnitude and direction. The straight line

hv, described with uniform velocity £7, is the hodograph.

In the elliptic harmonic motion

p = a cos [nt + e) + /S sin {nt + e)

we have

ov = p = na cos {nt + e + ^tt) + wy3 sin {nt + e + ^tt).

Thus the point v moves har-

monically in an ellipse similar

and similarly situated to the

original path, of n times its

linear dimensions, being one
quarter phase in advance. As
a particular case, the hodo-
graph of uniform circular mo-
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tion is again uniform circular motion. "We have seen that

ov is n.oq, where oq is the semi-conjugate diameter of op.

Of course the hodograph of every rectilinear motion is

also a rectilinear motion; but in general a different one.

The velocity in the hodograph is called the accelera-

tion of the moving point; thus the velocity of v is the

acceleration of ^. It is got from p in precisely the same
way as p is got from p, and accordingly it is denoted by p.

The acceleration is the flux of the velocity.

In the parabolic motion, since p = ^ + 2t'y, we have

p = 27, or the acceleration is constant. In the case of a

body falling freely in vacuo, this constant acceleration

amounts at Paris to 981 centimeters a second per second;

it is called the acceleration of gravity, and is usually de-

noted by the letter g. It varies from one place to ano-

ther, for a reason which will be subsequently explained.

In elliptic harmonic motion p is to be got from p by
the rule: Multiply by n, and increase the argument by
^TT. Hence

p = n^ a cos {nt + € + 7r) + w^/3 sin (nt+€ + if)

= — n^ a cos {nt + e) —n^ ^ sin {nt + e) = — n^p.

Thus the acceleration at 73 is n^ times po; that is, it is

always directed towards the centre 0, and proportional to

the distance from it. It is clear from the figure that the

tangent at v is parallel to po ; and since the velocity of v

is n times ou, which is itself n times po, this velocity is if

times 2^0.

Those motions in which the acceleration is constantly

directed to a fixed point are of the greatest importance in

physics : and we shall subsequently have to study them in

considerable detail.

Acceleration is a quantity of the dimensions [L] : [T]*.

THE INVERSE METHOD.

So far we have considered the problem of finding the
velocity when the position is given at every instant. We
shall now shew how to find the position when the velocity

is given. The problem is of two kinds: we may suj)pose
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the shape of the path given, and also the magnitude of
the velocity at every instant ; or we may suppose the hodo-
graph given. For the present we shall restrict ourselves

to the first case.

Velocity being a continuous quantity, it can only be
accurately given at every in-

stant by means of a curve. Let
a point i move along oX with
unit velocity, and at every mo-
ment suppose a perpendicular

tv to be set up which repre-

sents to a given scale the velo-

city of the moving point at that

moment. Then the point v

will trace out a curve which is

called the curve of velocities of the moving point.

In uniform motion the curve of velocities is a hori-

zontal straight line, uv. In this case we can very easily

find the distance traversed in a
given interval mn; for we have
merely to multiply the velocity

by the time. Now the velocity

being mu, and the time mn, the

distance traversed must be re-

presented on the same scale by
the area of the rectangle umnv.
The meaning of the words on the same scale is this. Time
is represented on oX on the scale of one centimeter to a
second; suppose that velocity is represented on oF on
such a scale that a centimeter in length means a velocity

of one centimeter per second; then length will be repre-

sented by the area umnv on the scale of one square centi-

meter to one linear centimeter. To find the length repre-

sented by a given area, we must convert it into a rectangle

standing upon one centimeter; the height of this rectangle

is the length represented. The breadth, one centimeter,

which thus determines the scale of representation, is called

the area-base.

It is true also when the velocity is variable that the

distance traversed is represented by the area of the curve of
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velocities (Newton). "We shall prove this first for an in-

terval in which the velocity is continually increasing; it

will be seen that the proof holds equally well in the case

of an interval in which it continually decreases, and as the

whole time must be made up of intervals of increase and
decrease, the theorem will be proved in general.

Let uv be the curve of velocities during an interval

mn. Take a number of points a, b, c ... between m and n,

and draw vertical lines aA, hB,

cG, ... through them to meet the y ,^/^

cui-ve of velocities in A, B, C...

The length mn is thus divided into

a certain number of parts, corre-

sponding to divisions in the in-

terval of time which it represents.

Through A, B, G... draw hori-

zontal lines as in the figure, ng,

fAh, hBl, etc. These will form as it were two staircases,

one inside the curve of velocities, ugAkBlC..., and the

other outside it, ufAhB... Let the horizontal line through
u meet nv in r.

"We shall now make two false suppositions about the

motion of the point, one of which makes the distance

traversed too small, and the other too great. First, sup-

pose the velocity in the intervals ma, ah, be, ... to be all

through each interval what it actually is at the begiDning

of the interval ; as the velocity is really always increasing,

this supposition will make it too small, and therefore the

distance traversed less than the real one. In the interval

ma, according to this supposition, the velocity will be mu,
and the distance traversed will be represented by the

rectangle muga. So in the interval ab, the distance tra-

versed will be aAkh. Hence the distance traversed in the

whole interval mn will be represented by the area of the

inside staircase mugAkBlG...qn. Secondly, suppose the

velocity in each interval to be what it actually is at the

end of the interval: then in the interval ma the velocity

will be aA, and the distance traversed mfAa. So the

distance traversed in the interval mn will be represented

by the area of the outside staircase mufAhB...vn. But
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this supposition makes the velocity too great, excepting at

the instants a, h, c ...) therefore the actual distance tra-

versed is less than the area of the outer staircase.

It appears therefore that the distance traversed in the

actual motion is represented by an area which lies between
the area of the outer and the area of the inner staircase.

But the area of the curve of velocities lies between these

two. Therefore the difference between the area of the

curve of velocities and the area which represents the dis-

tance traversed is less than the difference between the

areas of the outer and inner staircases. Now this last

difference is less than a rectangle, whose height is rv and
whose breadth is the greatest of the lengths ma, ab, ...

;

for it is made up of all the small rectangles on the curve

like ufAg. But we may divide the interval inn into as

many pieces as we like, and consequently we may make
the largest of them as small as we like.

It follows that there is no difference between the area

of the curve of velocities and that which represents the

distance traversed. For if there is any, let it be called S.

Divide mn into so many parts that a rectangle of the

height nv, standing on any of them, shall be less than

this area 8. Then we know that the difference in ques-

tion is less than a rectangle of height rv standing on the

greater of these parts, that is, less than 8 ; which is con-

trary to the supposition.

This demonstration indicates a method of finding the

area of a curve, and, at the same time, of finding the dis-

tance traversed by a point moving with given velocity.

The method is the same in the two problems (which, as we
have just seen, are really the same) but has to be described

in somewhat different language. For the area of the

curve umnv, the rule is : Divide mn ^
into a certain number of parts,

and on each of these erect a rect-

angle whose height is the height of

the curve at some point vertically

over that part; then the sum of the

areas of these rectangles will differ
""

from the area of the curve by a
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quantity which can be made as small as we like by in-

creasing the number of parts and diminishing the largest of

them. For the distance traversed during a certain interval,

the rule is : Divide the interval into a certain number of

parts, and suppose a body to move uniformly during each

of those parts with a velocity which the actual body has

at some instant during that part of the interval ; then
the distance traversed by the supposed body will ditfer

from that traversed by the actual body by a quantity

which can be made as small as we like by increasing the

number of parts and diminishing the largest of them.

For example (Wallis), suppose the velocity at time t to

be t^, and that we have to find the space described in the in-

terval from t = a to t = h. Let this interval be divided into

n parts in geometric progression, as follows. Let a" = b :a,

so that b = a^'a. Then the parts shall be the intervals

between the instants a, aa, a^a, . . . a^'^a, h. The velocities

of the moving body at the beginnings of these intervals

are a*, cr^a*, ct^V, . . . ff<'*~^>*a^ V ... Hence if a body move
uniformly through each interval with the velocity which
the actual body has at the beginning of that interval, it

will describe the space

a!'{aa -a)+ a^aJ" {a^a - tra) + ... + or'^-^'^a'^ (a»a - a^'-'^a)

= a*+i (a- - 1) (1 + o-^+i + o-2(*+i) + ... + ctC^-iXZ-^+D)

= a*+i (cr — 1) — —
rA+ l, l + o- + o-''+... + o-*

Now the larger n is taken, the more nearly <r approaches

to unity, and consequently, the more nearly the denomi-
nator of this fraction approaches to the value k+ 1. Thus
the space described from t — a to t=h h [V^^ — a*^') : ^+1.
By making a— and h=t in this formula, we find that the

space traversed between and t is t^^'^ : k + 1. This

agrees with our previous investigation ; for if (^'+1) s=t^^'^,

we know that s = t^. As in the converse investigation,

p. 55, it is easy to extend the method to the case in

which ^ is a commensurable fraction ; for the quotient

cj-*"*"! — 1 : tr— 1 approaches also in that case the value

k + 1 when a approaches unity.
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As an example, we may find the area of a parabola.

Here pn^ varies as an, or pn = fju. an'^. ^
Thus we must put k = \. Then area ^^

ahc = f /tt . ah% but fi . ah^ = he,

therefore area ahc = ^ah . hc = two-
thirds of the circumscribing rect-

angle ahcd.

A small interval of time being denoted by St, the ap-

proximate value of s is the sum of a series of terms like

s8t, which we may write 2sSi. The value to which this

sum approaches when the number of intervals 8t is in-

creased and their size diminished, is written Jsdt. Thus
the equation s=Jsdt is shorthand for thjs statement: s is

the value to which the sum of the terms s8t approaches
as near as we like when the number of the St is increased

and their size diminished sufficiently. When the whole
interval considered lies between t = a and t = b, we in-

dicate these limits of the interval thus: s=J^ sdt. This

expression is called the integral of s hetween the limits a
and h, oxfrom a to h. Observe that although the sign /
takes the place of X, and sdt of sht, yet / does not mean
sum, nor sdt a small rectangle of breadth dt and height s.

The whole expression must be taken as one symbol for a
certain quantity, which indicates in a convenient way how
that quantity may be calculated, jsdt is the value to

which the sum %sSt approaches; it is not itself a sum,

but an integral, that is to say, a quantity which may be
approximately calculated as the sum of a number of small

parts.

The result obtained on the previous page may now bo
written thus

:

P^tHt = t^-^^ :k + l.

CURVATURE.

A plane curve may be described by a point and a
straight line which move together so that the point al-

ways moves along the line and the line always turns round
the point. (Plucker.) Let s be the arc of the curve,
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measured from a fixed point a up to the moving point p,

and let ^ be the angle which the moving line (the tangent)

makes with a fixed line. Then the linear velocity of the
point along the line is s, and the angular velocity of the line

round the point is ^. The ratio ^ : s is called the cur-

vature of the curve at the point p. This ratio is the
s-flux of ^ ; for we know that, since is a function of s

which is a function of i, <^ = s . ?)j^, see p. 66. Thus we
may define the curvature as the rate of turning round per
unit of length of the curve.

We may also define it independently of the idea of

velocity, thus. The angle yjr between the direction of

the tangents at a and h is called the total curvature of the

arc a&; the total curvature divided by the length of the

arc is called the mean curvature of the arc ; and the cur-

vature at any point is the value to which the mean cur-

vature approaches as nearly as we like when the two ends

of the arc are made to approach sufficiently near to that

point.

In a circle of radius a, the arc s = a^; consequently

s = a(j), and ^ : i = 1 : a, or the curvature is the recipro-

cal of the radius. (Observe that curvature is a quantity

of the dimensions [i^]"^) It is in fact obvious that the

arc of a small circle is more curved than that of a large

one.

When the point stops and reverses its motion, while

the line goes on, we have a cusp in the curve ; at such a

point 6' = 0, while ^ is finite, and the curvature is infinite.

When the line stops and reverses its motion, while the

point goes on, we have a point of inflexion ; at such a
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point (^ = while s is finite, and the curvature is zero.

When both motions are reversed, we have a rliamphoid

cusp or node-cusp; the curvature is in general finite and
the same on both branches.

A circle touching a curve and having the same curva-
ture an the same side at the point

of contact is called the circle of
curvature at that point. Its radius

is called the radius of curvature.

Its centre is called the centre of
curvature. In general the curvature

is greater than that of the circle

on one side of the point, and less on the other; so that

the curve crosses the circle, passing outside where its

curvature is decreasing and inside where it is increasing.

If then we draw a circle to touch a
curve at a point p and cut it at a point

q, and then alter the radius of the circle,

by moving the centre o along the normal
at p, until q moves up to p, we shall

obtain the circle of curvature. Hence
also this circle may be described as one
which has three points of intersection

combined into one point ; for the con-

tact at p already combined two points.

At a point of maximum or minimum curvature (like

the ends of the axes of an ellipse) the curve lies wholly

inside or wholly outside the circle, as in a case of ordinary

contact ; in such a case four points of intersection are

combined into one.

We know that (p being the position-vector op) p is the

velocity, and is therefore parallel to the tangent at p; and
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6' is the magnitude of the velocity.

The quotient p : s, therefore, or

3^p, is a vector of unit length, pa-
rallel to the tangent at p. It is

convenient to denote the s-flux

of anything by a dash, just as the

<-flux is denoted by a dot, so that

p = d^p. Since ot is always of

unit length, t describes a circle,

and the velocity of t or p is the

rate at which ot turns round ; that is, in magnitude it is

equal to <p, but its direction is tc, parallel to the inner

normal at p. Now the s-flux of p (which we shall write

p") is equal to the i-flux of p divided by s. But the i-flux

of p\ as we have seen, is in magnitude equal to cp. Hence
p", the second s-flux of p, is a line parallel to the inner

normal at j?, of length equal to the curvature at p.

When a curve does not lie in one plane (in which case

it is called a tortuous curve), a more complex machinery is

required to describe it. We must then take a point, a
straight line through the point, and a plane through the

straight line ; and let them all move together so that the

point moves along the line, the line turns round the point

in the plane, and the plane turns round the line. The
point is then a point on the curve, the line is the tangent

at that point, and the plane is called the osculating plane
at the point. The curvature is, as before, the rate of

turning round of the tangent per unit of length ; and, in

addition, the rate per unit of length at which the osculating

jdane turns round the tangent line is called the tortuosity.

In this case, however, we require somewhat closer at-

tention to determine what we mean by the rate of turning

round of the tangent line. Let ot be a line of unit length

always parallel to the tangent; then the point t will

always lie upon a sphere of imit radius ; but the curve not

being now in one plane, t will not describe a great circle of

the sphere (or circle whose plane goes through the centre).

As p moves along the curve, t will describe some curve on
the sphere, and the velocity of i will still be, in magnitude,

the rate of turning round of ot, that is, of the tangent.
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But besides this, if ic be the tangent to the path of t, the

plane otc will be the plane m which ot is turning, that is,

it will be parallel to the osculating plane. Hence tc is

parallel to the normal in the osculating plane at p ; this is

called the principal normal. Since the curvature is a
bending in the osculating plane, towards this normal, we
may say that tc is the direction of the curvature.

Now in this case, just as wdth a plane curve, p is the

unit vector ot parallel to the tangent, and p" is a vector

parallel to tc and in length equal to the curvature. Thus
pi' represents the curvature in magnitude" and direction.

TANGENTIAL AND NORMAL ACCELERATION.

We have remarked that the i-flux of p is equal to the

s-flux multiplied by the velocity, 6- or v. We may now
find an expression for the second <-flux of p, or the accele-

ration, by regarding it as the dux of this product, vp.

Namely we have

p = vp

.'. p = vp' + vp.

But p'= sp" = vp" (as before remarked, p. 76),

therefore p = vp' + v^p",

that is to say, the acceleration p may be resolved into two
parts, one of which vp is parallel to the tangent, and its

magnitude is the rate of change in the magnitude of the

velocity; the other v^p" is parallel to the (principal)

normal, and its magnitude is the squared velocity multi-

plied by the curvature. It appears also that when the

path of the moving point is tortuous, the acceleration is

wholly in the osculating plane.

We may at once verify this proposition in the case of

uniform motion in a circle,

in which the hodograph is

another circle (radius v) de-

scribed uniformly. Since the

two circles are described in

the same time, the velocities

in them must be proportional to their radii j hence the
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acceleration of p, = velocity of ^t,:v = v: a, or accelera-

tion = v"^ : a = t)'* X curvature. Thus the normal acceleration

is the same as that of a point moving with the same
velocity in the circle of curvature.

The proposition may be further illustrated by means
of the hodograph. Let ou represent the velocity of j>,

and uc be the velocity of u. This
may be resolved into urn in the di-

rection of ou, which is the rate of

change in its magnitude, or v ; and
mc perpendicular to ou, which is ou
multiplied by its angular velocity, or

V(j), since this perpendicular velocity

may be regarded as belonging to

motion in a circle of radius v. Now since the curvature

is ^ : V, it follows that V(f> = v^ x curvature.

This theorem is of great use in determining the curva-
ture of various curves.

LOGARITHMIC MOTION.

A point is said to have logarithmic motion on a straight
line when its distance from a fixed point on the line is

equally multiplied in equal times.

When a quantity is equally multiplied in equal times,
its flux is proportional to the quantity itself. Let mq, nr
be two values of such a quantity, at the times represented
by m, n ; and let mq — s, nr = s^ .

Then if we move mn to the right,

keeping it always of the same
length, the ratio of s to s^ will

remain constant; for the dif-

ferent intervals represented by
mn will be equal, and the

quantity is equally multiplied in equal times. We shall

have therefore s = ks^, where k is this constant multiplier.

Therefore s = A:s^, and consequently s:s^ = s:s^. Hence
we may write s =ps, where p is a, constant.

Conversely, tuhen the flux of a quantity is proportional

to the quantity itself, it is equally multiplied in equal times.

For let s, s^ be two values of the quantity, at times
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separated by a given constant interval. Then we know
that s : s^ = s : s^, or 55j — 55^ = 0; that is (p. G5), the
flux of the quotient s : 5^ is zero. Now a quantity whose
flux is zero does not alter, but remains constant. There-
fore s = ks^ where k is constant; so that in any interval

equal to the given one the quantity is multiplied by the
same number k.

A quantity whose flux is always p times the quantity
itself is said to increase at the logarithmic rate p.

If two quantities increase at the same logarithmic rate,

their sum and difference increase at the same logarithmic
rate. For if ii =pu, i) =pv, then ii ±v=p {u ±v).

If a quantity increases at a finite logarithmic rate, it is

either never zero or ahvays zero. For let such a quantity be
zero at a and have a finite value hq at b. At the middle
point c of ah it must have a value

which is the geometric mean of ^^

zero and hq ; that is, zero. Simi-
larly it must be zero at the

middle point of hc\ and by pro-

ceeding in this way we may shew a c
},

d>

that it is zero at a point indefinitely near to any point on
the left of h. If we make hd = ch, the value at c? is a
third proportional to zero and hq ; that is, it is infinite.

In the same way we may shew that the quantity is

infinite at a point indefinitely near to any point on the
right of b. It appears therefore that the quantity sud-

denly jumps from zero to hq and then to infinity ; so that

at hq the rate of increase is infinite. Hence its ratio to bq
is infinite, or the logarithmic rate is infinite.

This case corresponds to the case in uniform motion
when the velocity is infinite and the point is at a certain

finite position at a given instant. At all previous instants

it was at an infinite distance behind this position ; at all

subsequent instants it is at an infinite distance in front of it.

If two quantities increase at the same (finite) logarith-

mic rate, they are either never equal or always equal. For
their difference is either never zero or always zero.

Let P be the result of making unity increase at the

logarithmic rate p for one second ; then the result of
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making it increase at that log. rate for t seconds is P* when
i is a whole number, for the quantity is multiplied by P
in each second. It is also one value of F' when < is a
commensurable fraction, say in : n. For let x be its

value after t seconds, then the value after nt seconds is a;",

for the quantity is multiplied by x every t seconds. But
nt = m, and we know the result of growing for m seconds
is F"\ Therefore x" = P"', or x is an w*'' root of P'" ; that

is, it is a value of P'.

If we spread out the growth in one second over

p seconds, the number expressing any velocity must be
divided by p ; hence if s was ps before, it must now = s,

Hence the result of making unity increase at the log. rate p
for one second is the same as the result ofmaking it increase

at the log. rate 1 for p seconds. Let e be the result of

making unity increase at the log. rate 1 for one second

;

then P is a value of e* whenever^ is commensurable.

We now make this definition : the result of making
unity grow at the log. rate j3 for t seconds is denoted by
e^\ and called the exponential of pt. The exponential

coincides with one value of e to the power pt when j9i is

commensurable. Thus a^ has two values, + ^/a and — V«;

but e^ has only one value, the positive square root of the

positive quantity e, whatever that is.

If s = e"*, then pt is called the logarithm of s. The
name logarithmic rate is given to p because it is the rate

of increase of the logarithm of s.

We have an example of a quantity which is equally

multiplied in equal times in the quantity of light which

gets through glass. If f of the incident light gets through

the first inch, f of that f will get through the second inch,

and so on. Thus the light will be multiplied by | for

every inch it gets through; and, since it moves with

uniform velocity, it is equally multiplied in equal times.

The density of the air as we come down a hill is an
example of a quantity which increases at a rate propor-

tional to itself, for the increase of density per foot of

descent is due to the weight of that foot-thick layer of

air, which is itself proportional to the density.



INFINITE SERIES. 81

ON SERIES.

"We know that when x is less than 1, the series

l + x + x^+ ...

is of such a nature that the sum of the first n terms can

be made as near as we like to y-— by taking n large
JL "~ *C

.
' 1 — x"

enough. For the sum of the first n terms is -=
, and°

1 — x
since x is less than 1, a;" can be made as small as we
like by taking n large enough. The value to which
the sum of the first n terms of a series can be made
to approach as near as we like by making n large enough
is called the sum of the series. It should be observed

that the word sum is here used in a new sense, and we
must not assume without proof that what is true of

the old sense is true of the new one: e.g. that the sum
is independent of the order of the terms. When a series

has a sum it is said to be convergent. When the sum of

n terms can be made to exceed any proposed quantity in

absolute value by taking n large enough, the series is

called divergent.

A series whose terms are all positive is convergent

if there is a positive quantity which the sum of the first n
terms never surpasses, however large n may be. For
consider two quantities, one which the sum surpasses,

and one which it does not. All quantities between these

two must fall into two groups, those which the sum
surpasses when n is taken large enough, and those which
it does not. These groups must be separated from one

another by a single quantity which is the least of those

which the sum does not surpass; for there can be no
quantities between the two groups. This single quantity

has the property that the sum of the first n terms can

be brought as near to it as we please, for it can be made
to surpass every less quantity.

The same thing holds when all the terms are negative,

if there is a negative quantity which the sum of the first

n terms never surpasses in absolute magnitude.

c. G
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When the terms are all of the same sign, the sum of

the series is independent of the order of the terms. For
let P„ be the sum of the first n terms and F the sura of

the series, when the terms are arranged in one order ; and
let Q„ be the sum of the first n terms and Q the sum of

the series, when the terms are arranged in another order.

Then P„ cannot exceed Q, nor can Q^ exceed P; and P„,

Q„ can be brought as near as we like to P, Q by taking n
large enough. Hence P cannot exceed Q, nor can Q ex-

ceed P; that is, P = Q.
When the terms are of different signs, we may separate

the series into two, one consisting of the positive terras

and the other of the negative terms. If one of these is

divergent and not the other, it is clear that the combined
series is divergent. If both are convergent, the combined
series has a sum independent of the order of the terras.

For let P,„ be the sura of m terms of the positive series,

— Q^ the sum of n terms of the negative series, P, — Q,
the sums of the two series respectively ; and suppose that

in the first m + n terms of the compound series there are

TO positive and n negative terras, so that the sum of those

m + n terms is P„— Q„. Then P— P„, Q—Q„ can be
made as small as we like by taking m, n large enough

;

therefore P—Q— (P^ — QJ can be made as small as we
like by taking m + n large enough, or P— Q is the sum of

the compound series. It is here assumed that by taking

sufficient terms of the compound series we can get as

many positive and as many negative terms as we like. If,

for example, we could not get as many negative terms as

we liked, there would be a finite nuraber of negative

terras raixed up with an infinite series of positive terras,

and the sura would of course be independent of the order.

If, however, the positive and negative series are both

divergent, while the terms in each of thera dirainish with-

out lirait as we advance in the series, it is possible to

make the sura of the corapound series equal to any arbi-

trary quantity C by taking the terras in a suitable order.

Suppose C positive ; take enough positive terras to bring

their sum above C, then enough negative terms to bring

the sum below C, then enough positive terms to bring

the sum again above C, and so on. We can always per-
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form eacli of these operations, because each of the series is

divergent ; and the sum of n terms of the compound series

so formed can be made to differ from G as little as we
like by taking n large enough, because the terms decrease

without limit.

Putting these results together, we may say that the

sum of a series is independent of the order of the terms
if, and only if, the series converges when we make all the

terms positive.

EXPONENTIAL SEEIES.

We shall now find a series for e*, which is the result

of making unity grow at the log. rate 1 for x seconds.

Suppose that

e" = a + ba; + cx^ + daf+ ..,

that is, suppose it is possible to find a, h, c ... so that

the series shall be convergent and have the sum e*. We
will assume also (what will have to be proved) that the

flux of the sum of the series is itself the sum of a series

whose terms are the fluxes of the terras of the original

series. Now the flux of (T is e", because it grows at the

logarithmic rate 1. Hence we have

and this must be the same series as before. Hence

h = a, 2c = b, Sd = c, etc.

Now by putting £c = we see that a= 1, because e° is

the result of making unity grow for no time. Writing

then for shortness Un instead of 1 . 2 . 3 ... w, we find

_, — tv *C l// •*/ /• / \

,. = l+^+ -+-+_ + ... + -- + ...=/(:.), say.

This is called the exponential series. We shall now
verify this result by an accurate investigation.

The exponential series is convergent for all values of x.

For take n larger than x \ then the series after the w"*

term may be written thus

:

n^V ^TT+i'^ (71 + 1) . (71+ 2j
"^ '")'

6—2
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and each term after the first two of the quantity in the

brackets is less than the corresponding term of

X a?

which is convergent. And since it is convergent when the

terms are all positive, the sum is independent of the order

of the terms.

The sum of the exponential series increases at log. rate 1.

Consider four quantities, x^, x^, x,^, x, in ascending order

of magnitude. We find for the mean flux from x^ to ir^,

x^ — x^ 2 6

(Observe that the order of the terms has been changed,

and why this is lawful.) Each term of this series is less

than the corresponding term of f{x), and greater than
the corresponding term of f{x^. Hence the series is

convergent, and its sum M lies between f{x^ and f{x).
And since M is finite,

M{x,-x^) orf{x)-f{x,),

can be made as small as we like by making x^ — x^ small

enough. Hence also f(x) —f(x^) can be made as small

as we like by making x — x^ small enough. Consequently

we can find an interval (from x^ to x) such that the

mean flux M of every included interval (from x^ to x.,)

differs from f{x) less than by a proposed quantity,

however small. Therefore f{x) is the flux oi f(x), or

the sum of the exponential series increases at log. rate 1.

It follows that f{x) = e" ; for both quantities increase

at the log. rate 1, and they are equal when x = 0, there-

fore always equal.

It appears from the investigation above, that if /(ic)

denote the sum of a convergent series proceeding by
powers of x, and /' {x) the sum of the derived series

got by taking the flux of every term ; then /' (x) will

be the flux oi f{x) whenever f'[x) —f'{y) can be made
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as small as we like by taking x—y small enough; that

is, when fx varies continuously in the neighbourhood
of the value a?.

By putting a; = 1, we find the value of the quantity e\

it is 2718281828...

THE LOGARITHMIC SPIRAL.

"We may convert a step oa into a step 6b by turning it

through the angle aoh and altering its length in the

ratio oa : oh. But this opera-

tion may be divided into two
simpler parts. From h draw
htn perpendicular to oa, then

6b = om-\- mb. Now we may
convert oa into om by simply

increasinor its length in the

ratio oa : om. Let om : oa = x,

so that om = x . oa. If oa! is

drawn perpendicular to oa, and equal to it in length,

we can convert oa into mh by multiplying it by a nu-
merical ratio y, such that tnb = y . oa'. Now we can
convert oa into oa' by turning it counter-clockwise through
a right angle. Let i denote this operation ; then

oa = i . oa.

Consequently mh =y .oa' = yi. oa.

And finally

oh =om + mh = x .oa + yi .oa= {x + yi) oa.

Thus the operation which converts oa into oh may be
written in the form x + yi, where x and y are numerical

ratios, and i is the operation of turning counter-clockwise

through a right angle. This meaning is quite different

from that which we formerly gave to the letter i. We
shall never use the two meanings at the same time, in

speaking of steps in one plane.

If oa be taken of the unit length, every other step

oh in the plane may be represented by means of its ratio

to this unit ; for oa being = 1,

oh = {x-\- yi) oa = x + yt.
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The quantities x and y will then be the components
of oh parallel to oX, oY.

Since turning a step through two right angles is

reversing it, ^* = — 1; thus i is a value of V(— !)•

The operation a; + 3/1 is called a complex number.

The ratio 06 : oa, which is + VC^" + 2/^)> is called the
modulus of the complex number x + ^i.

If a point moves in a plane so that p = qp, where q
is a constant complex number, it will describe a curve

which is called the logarithmic spiral. The velocity of

the point p makes a constant angle

with op and is proportional to it

in magnitude. Let q = x+yi, then
X . op is the component of the
velocity in the direction op. If

r denotes the length op, we shall

have r = xr, and therefore r = ae"^*,

where a is the value of r at the

beginning of the time. Thus the magnitude of op in-

creases at the log. rate x. The component of velocity

perpendicular to op is yi .op; it is equal in magnitude
to op multiplied by its iangular velocity, or (if 6 is the

angle Xop) it is op . 0. Hence 6 = y or the angular

velocity is constant. Thus the motion of p is such that

op increases at the log. rate x while it turns round with
the angular velocity y. Since 6 = yt, while r = ae'*, it

follows that r= ae^, where k = x : y=— cot opt.

The position vector p of this point may be said to

increase at the logarithmic rate q, because p = qp. Hence
we may write p = ae", where a is the value of p when t = 0.

The meaning of e^, when q is a, complex number, is

the result of making the unit step oa grow for t seconds at a
rate which is gotfrom the step at each instant by multiply-

ing it by the complex number q. In other words, we must
make a point p start from a and move always so that its

velocity is q times its position-vector ; that is, its velocity

must be got from the position-vector by turning it through

a certain angle and altering it in a certain ratio.

We may now prove that, just as e' is equal to the sum
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•of the series f{x), so e*' is equal to the sum of the series

f{qt). To make our former proof available, we have only
to premise some observations on complex numbers and on
series formed of them.

A complex number q alters the length of a step oa
in a certain ratio (the modulus) and turns it round
through a certain angle, so converting it into oh. Suppose
that another complex number q^ turns oh into oc, by alter-

ing its length in some other ratio and turning it through
some other angle. Then the product q^q is that complex
number which turns oa into oc ; it therefore multiplies oa
by the product of the two ratios, and turns it through the
sum of the two angles. Hence q^q = qq^ ; or the product

of two complex numbers is independent of the order of
their multiplication; and the modulus of the product is the

product of the moduli. The same thing is clearly true for

any number of factors.

Instead of operating on a step with a complex number,
we may operate on any plane figure whatever. The effect

will be to alter the length of every line in the figure in a

certain ratio, and to turn the whole figure round a certain

angle. Thus the new figure will be similar to the old one.

Taking for this figure a triangle, made of two steps and
their sum a + /3, we learn that q{ci + /3) = qa + q0. The
steps themselves may be represented by complex num-
bers, namely their ratios to the unit step. Hence also

{a + ^)q = aq + ^q. Thus complex numbers are multi-

plied according to the same rules as ordinary numbers.

A series of complex numbers may be divided into two
series by separating each term x + yi into its horizontal

(or real) part x and its vertical part i/i. Neither of these

parts can be greater than the modulus of the term ; and
therefore both parts will converge independently of the

order of the terms if a series composed of the moduli con-

verges. To change the series f{qt) into the series of the

moduli, we have merely to write mod, qt instead oi qt; viz.

the series of the moduli is /(mod. qt); because the modulus
of q" is the n^ power of the modulus of q.

We have before noticed that when the step p grows at

the complex log. rate x + yi, its length or modulus r grows
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at the log. rate x. Hence p is either never zero or always

zero.

It may now be proved successively that the series f{gf)

is convergent; that if t^^ t^, t^, t are four quantities in

ascending order of magnitude, the mean flux

differs from gf(qt) by a complex number whose horizontal

and vertical parts are severally less than the correspond-

ing parts of qf(qt) — qfiqtX whose modulus may therefore

be made less than any proposed quantity by making t—fg
small enough ; and consequently that the flux of f(qt) is

qfiqt). Hence it follows that f{qt)=^e'^, because they
both grow at the log. rate q, and are both equal to 1 when
i = 0.

When the velocity of p is always at right angles to

op, the logarithmic spiral be-

comes a circle, and the quantity

q is of the form yi. Suppose the
motion to commence at a, where
oa = 1, and the logarithmic rate

to be i; that is, the velocity is

to be always perpendicular to the
radius vector and represented by
it in magnitude. Then op = e".

Now the velocity of p being unity in a circle of unit

radius, the angular velocity of op is unity, and therefore

the circular measure of aop is t. But

op = am + mp — cos t + i sin t.

Therefore e"= cos t + i sin t,

Euler's extremely important formula, from which we get

at once the two others,

cost = ^ (e" + e"") , z sin « = 1 (e" - e"")

.

Moreover, on substituting in these formulae the ex-

ponential series for e" and e~'\ and remembering that
i" = — 1, we find series for cos t and sin t, namely,
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'^''='-i'+m-m+

Bmt = t- If + --,-
no nr

The formula e' = cos 1+i sin 1

may be graphically verified by con

+

struction of the several terms
the series

of

The first term is oa ; then ah = i,

he = Jt . ah, cd = ^i . bo, de = ^i . cd,

ef— ^i . de, and so on. The rapid

convergence of the series becomes
manifest, and the point / is already very close to the end
of an arc of length equal to the radius.

^^
\
\

QUASI-HARMONIC MOTION IN A HYPERBOLA.

It is sometimes convenient to use the functions

I (e* — e~''), called the hyperbolic sine of sc, hyp. sin x, or

hs X, and ^ (e" + e'"), called the hyperbolic cosine of x,

hyp. cos X, or he x. They have the property he'* x — hs^ x = l.

Thus whenever we find two quantities such that the dif-

ference of their squares is constant, it may be worth while

to put them equal to equimultiples of the hyperbolic sine

and cosine of some quantity: just as when the sum of

their squares is constant, we may put them equal to equi-

multiples of the ordinary sine and cosine of some angle.

The flux of he 3J is iT hs a; and the flux of hs a; is a; he x,

as may be immediately verified.

The motion p = a he (n^ + e) + /S hs (nt + e) has some
curious analogies to elliptic harmonic motion. Let ca = a,

cb=P, then cm — ca. he {nt -\- e), mp = c6 . hs {nt + e), so

that —s^ ~ = 1, or mp' : ma . ma = ch^ : ca^. The curve
ca CO

having this property is called a hyperbola. We see at

once that
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p = na hs {nt + e) +n^ he (nt+ €)=n. cq, say;

then cp + cq = {a + y8) e",

and cp—cq = (a — /S) e-^ where d = nt + €. Thus pq is

parallel to aJ, and en (where n is the middle point of pq)
is parallel to ab'. Moreover pn.cn = l product of lengths
of a + ^ and a— ^ — ^cx.cy. Hence it appears that the

further away p goes from cy, the nearer it approaches
ex, and vice versa. The two lines ex, ey which the curve
continually approaches but never actually attains to, are

called asymptotes {aavixirroutau, not falling in with the
curve). It is clear that the curve is symmetrically situated

in the angle formed by the asymptotes, and therefore is

symmetrical in regard to the lines bisecting the angles

between them, which are called the axes. It consists of

two equal and similar branches ; though the motion here
considered takes place only on one branch.

The acceleration p = n^p ; thus it is always proportional

to the distance from the centre, as in elliptic harmonic
motion, but directed away from the centre. The lines

cp, cq, are conjugate semidiameters of the hyperbola, as

are ca, ch. Each bisects chords parallel to the other, as

the equation of motion shews. The locus of 5- is a hyper-

bola having the same asymptotes, called the conjugate

hyperbola.

The hyperbola is central projection of a circle on a

horizontal plane, the centre of projection being above the

lowest, but lower than the highest, point of the circle.

Let hy a be highest and lowest points of the circle, v the
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centre of projection, am the projection of ah and pm of

qn which is perpendicular to ab. We find

an : am = nf : vf\

also nb : gb =nf : vf,

and gb : a'm=fb : af;

multiply these three together, then

an .nb : am . am = nf^ .fb : vf . qf.

But 2)m^ : an.nb = pm^ : qn^ = af^ : nf^ ;

therefore pm^ : am.a'm = af.fb : vf,

the pl'operty noticed above.

Making a change in the figure, the same process shews
that the ellipse is central projection of a circle which is

wholly below the centre of projection.

These three central projections of the circle, ellipse,

parabola, and hyperbola, are called conic sections; being

plane sections of the cone formed by joining all the points

of a circle to a point v.



CHAPTER III. CENTRAL ORBITS.

THE THEOREM OF MOMENTS.

The moment of the finite straight

line pt about the point o is twice the

area of the triangle opt. Its mag-
nitude is the product of the length

pt and the perpendicular on it from o.

Every plane area is to be regarded as a directed

quantity. It is represented by a vector drawn perpen-

dicular to its plane, containing as many linear centimeters

as there are square centimeters in the area. The vector

must be drawn towards that side of the plane from which
the area appears to be gone round counter-clockwise.

Thus om, is the vector representing twice the area opt, p
being the near end of pt and m on the upper side of the

plane opt.

The sum of the moments of two adjacent sides of a
parallelogram about any point is equal to the moment of
the diagonal through their point

of intersection. That is, triangle

oad = oac + oab ; each triangle be-

ing regarded as a vector, in the

general case when o is out of the

plane abed. Taking first the spe-

cial case of in the plane, we
observe that oad = ocd + cad + oac

;

but ocd + cad = oab, because the

height of oab is the sum of the heights of ocd and cad,

while all three stand on the same base ab or cd. Therefore

oad — oab + oac.
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Next, suppose o to be out of the plane. Then the
vector representing oab will be a line am perpendicular to
the plane oab, which may be re-

solved into components an, nm, of

which an is perpendicular to the
plane of the parallelogram and nm
parallel to that plane. Now an
represents on the same scale the

projection pab of oab on the plane
abed, and nm its projection opq on
the perpendicular plane. For the

triangles oab, pab, opq, being on the same base ab or pq
and having the heights respectively ao, ap, po, which are
proportional to am, an, nm, must have their areas propor-

tional to the lengths of these lines.

Suppose, then, the vector representing each of the
areas oab, oac, oad to be resolved into components per-

pendicular and parallel to the plane ; the theorem will be
proved if it is true separately for the components perpen-
dicular and for those parallel to the plane. Now for the
perpendicular components the theorem has been already

proved, because they represent the triangles pab, pac, pad,
which are projections on the plane abed of oab, oac, oad.

For the coi;nponents parallel to the plane, observe that

mn represents opq; it is at right

angles to ab and proportional to

the product of ab by op the dis-

tance of from the plane. Hence
the components parallel to the plane

are lines ab', ac, ad respectively at

right angles to ab, ac, ad, and pro-

portional to their lengths multiplied

by the distance of o from the plane.

Thus the figure ab'c'd' is merely

abed turned through a right angle and altered in scale;

whence it is obvious that ad' = ab' + ac.

Thus the proposition is proved in general. It is well

worth noticing, however, that the proof given for the

special case of.o in the plane applies word for word and

symbol for symbol to the general case, if only we interpret
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+ and sum as relating to the composition of vectors. Thus
oad = ocd + cad + oac, or one face of a tetrahedron is equal

to the vector-sum of the other three faces. It is, of course,

the sum of their projections upon it; and the components
of their representative vectors which are parallel to its

plane are respectively perpendicular and proportional

to oa, ad, do, so that their vector sum is zero. Again,

ocd { cad = oab, because the height of oab is the vector-

sum of the heights of ocd and cad.

For proving theorems about areas, the following con-.

sideration is of great use. We have seen that the pro-
jection of an area on any plane is represented hy the

projection of its representative vector on a line at right

angles to the plane. In fact, the angle cap between the

two planes is equal to the angle man between the two-

lines respectively perpendicular to them ; if we call this

angle 0, the projection of the area A is A cos 6, and the-

corresponding projection of the line of length A is also

A cos 0. Now it is easy to see that if the projections of

two vectors on every line whatever are equal, then the

two vectors are equal in magnitude and direction. Hence
it follows that if the projections of two areas on any plane
whatever are equal, then the areas are equal in magnitude,

and aspect. For example, the areas oad and oac + oah

(figure on p. 92) are such that their projections on any
plane are equal ; this projection is, in fact, the case of the

theorem of moments in which o is in the plane abed.

Hence the general theorem may be deduced in this way
from that particular case.

PRODUCT OF TWO VECTORS.

On account of the importance of the theorem of mo-
ments, we shall present it under yet another aspect. The
area of the parallelogram abdc may be supposed to be
generated by the motion of ah over the step ac, or by the-

motion of ac over the step ah. Hence it seems natural to

speak of it as the product of the two steps ah, ac. We
have been accustomed to identify a rectangle with the

product of its two sides, when theu' lengths only are
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taken into account ; we shall now make just such an ex-

tension of the meaning of a product as we formerly made
of the meaning of a sum, and still regard the parallelogram

contained by two steps as their product, when their di-

rections are taken into account. The magnitude of this

product is ab . ac sin hoc ; like any other area, it is to be
regarded as a directed quantity.

Suppose, however, that one of the two steps, say ac,

represents an area perpendicular to it ; then to multiply

this by ah, we must naturally make that area take the

step of translation ah. In so doing it will generate a
volume, which may be regarded as the product of ac and
ah. But the magnitude of this volume is ah multiplied by
the area into the sine of the angle it makes with ah, that

is, into the cosine of the angle that ac makes with ah.

This kind of product therefore has the magnitude
ab . ac cos hac ; being a volume, it can only be greater or

less ; that is, it is a scalar quantity.

We are thus led to two different kinds of product of

two vectors ab, ac ; a vector product, which may be writ-

ten V. ah . ac, and which is the area of the parallelogram

of which they are two sides, being both regarded as

steps; and a scalar product, which may be written

S.ah. 0(0, and which is the volume traced out by an area

represented by one, when made to take the step repre-

sented by the other.

Now the moment of ah about a is V.oa.ah; that of

ac is V.oa.ac; and that of ad is V.oa.ad, which is

Voa . (ab + ac). Hence the theorem tells us that

V. oa [ah + ac) = V.oa.ah + V. oa.ac;

or if, for shortness, we write oa = a, ah = ^, ac = y, the

theorem is that •

Fa(/3 + 7) = Fa/3+ Fa7.

We may state this in words thus : the vector product is

distributive. And in this form the proposition may be

seen at once in the figure on p. 93, if we make ah = a,

ap = ^, po = y ; it asserts that

area ahqp + axe&pqro = area ahrp,
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and this is obviously true of their projections on any-

plane.

The corresponding theorem for the scalar product, that
Sa (/3 + 7) = Sa^ + Say, is obvious if we regard a as an
area made to take the steps yS, 7.

But there is a very important difference between a
vector product and a product of two scalar quantities.

Namely, the sign of an area depends upon the way it

is gone round ; an area gone round counter-clockwise

is positive, gone round clockwise is negative. Now if

V . ab . ac = area ahdc, we must have by symmetry
V. ac .ab = area acdb, and therefore V. ac .ab= — V. ab . ac,

or Vy^ = — V^y. Hence the sign of a vector product is

changed by inverting the order of the terms. It is agreed
upon that Va^ shall be a vector facing to that side from
which the rotation from a to /3 appears to be counter-

clockwise.

It will be found, however, that Si^ = S^cx, so that the

scalar product of two vectors resembles in this respect

the product of scalar quantities.

MOMENT OP VELOCITY OF A MOVING POINT.

The flux of the moment of velocity of a moving point p
about a fixed point is equal to the moment of the accele-

ration about 0. For suppose that during a certain interval

of time the velocity has changed from p to p^, so that

p^ — p is the change of the velocity; then the sum of the

moments of p and p^ — p is equal to the moment of p^,

that is the moment of the change in the velocity is equal

to the change in the moment of velocity. Dividing each

of these by the interval of time, we see that the moment
of the mean flux of velocity is equal to the mean flux of

the moment of velocity, during any interval. Conse-

quently the moment of acceleration is equal to the flux

of the moment of velocity.

The same thing may be shewn in symbols, as follows,

supposing the motion to take place in one plane. We



MOMENT OF ACCELERATION. 97

may write p = re^, where r is the

length of op, and the angle Xop.

Then p=re^^+7'6.ie^, or the velo-

city consists of two parts, r along

op and rd perpendicular to it. The
moment of the velocity is the sum of the moments of these

parts; but the part along op (radial component) has no
moment, and the part perpendicular (transverse compo-

nent) has moment r'd. Next, taking the flux of p, we
find for the acceleration the value

p = re^ + Or . le*" + rd . ie^ + rff' . t'e^^ + r$ . ie^

= (r - rff') e** + (2f(9 + rO) ie'^.

Or the acceleration consists of a radial component r — r6^,

and a transverse component 2r^ + rd. The moment of
the acceleration is r times the transverse component,

namely 2rr0 + r^O. But this is precisely the flux of the

moment of velocity r^0.

Observe that the radial acceleration consists of two
parts, r due to the change in magnitude of the radial

velocity, and — r6^ due to the change in direction of the
transverse velocity.

We may also make this proposition depend upon the
flux of a vector product. The moment of the velocity is

Vpp, and the moment of the acceleration is Vpp ; we have
therefore to prove that Vpp is the rate of change of Vpp.
Now upon referring to the investigation of the flux of a
product, p. 64, the reader will see that every step of it

applies with equal justice to a product of two vectors,

whether the product be vector or scalar. In fact, the only
property used is that the product is distributive. Hence
the rate of change of Va^ is Va0 + Fa/3. (Observe that

the order of the factors must be carefully kept.) Apply-
ing this rule to Vpp, we find that its rate of change is

Vpp+ Vpp. Now the vector product of two parallel vec-

tors is necessarily zero, because they cannot include any
area ; thus Vpp = 0. Therefore 9< (

Vpp) = Vpp. This de-

monstration docs not require the motion to be in one
plane.

c. 7
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The moment of velocity about any point is equal to twice

the rate of description ofareas about that point When the

motion is in a circle, twice the area

aop being equal to r^6, and r constant,

its flux is r^6, the moment of velocity.

In any other path aq, having the

same angular velocity, the area de-

scribed in the same time is oaq, and
the mean flux of area in the two
cases is oap and oaq respectively di-

vided by the time. The ratio of their

difference to either of these is the

ratio of apq to oap or oaq, which is approximately the

ratio of pq to op or oq, and can be made as small as we
like by taking p near enough to a. Thus the mean fluxes

in the two cases approach one another without limit as

they approach the true fluxes ; or the true fluxes are

equal. Hence twice the rate of description of areas is

always r^6, the moment of velocity.

When the acceleration is always directed towards a

fixed point o, the moment of velocity is constant, and equal

areas are swept out by the radius vector in equal times. If

the acceleration of^ passes through o, its moment about o

is zero; consequently the flux of the moment of velocity is

zero, or that moment is constant. Because it is constant

in direction, the path is a plane curve; for the plane con-

taining op and the velocity has always to be perpendicular

to a fixed line. Because it is constant in mag-nitude, the

rate of description of areas is also constant, or, which
is the same thing, equal areas are swept out in equal

times.

The following is Newton's proof of this proposition.

Let the time be divided

into equal parts, and in the

first interval let the body
describe the straight line AB
with uniform velocity. In the

second interval, if the ve-

locity were unchanged, it

would go to c. if Be = AB
;
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SO that the equal areas ASB, BSc would be completed in

equal times.

But when the body arrives at B, let a velocity in
the direction B8 be communicated to it. The new
velocity of the body will be found by drawing cG parallel

to BS to represent this addition, and joining BG. At
the end of the second interval, then, the body will be
at C, in the plane SAB. Join SG, then area ISCB = ScB
(between same parallels SB and Cc) = SBA.

In like manner, if at C, D, E, velocities along CS, BS,
ES are communicated, so that the body describes in

successive intervals of time the straight lines CD, BE,
EF, etc., these will all lie in the same plane ; and the

triangle SGD will be equal to SBC, and SDE to SCD,
and SEF to SDE.

Therefore equal areas are described in the same plane

in equal intervals; and, componendo, the sums of any
number of areas SADS, SAFS, are to each other as the

times of describing them.

Let now the number of these triangles be increased,

and their breadth diminished indefinitely ; then their

perimeter ADF will be ultimately a curved line; and
the instantaneous change of velocity will become ulti-

mately a continuous acceleration in virtue of which the

body is continually deflected from the tangent to this

curve ; and the areas SADS, SAFS, being always pro-

portional to the times of describing them, will be so in

this case. Q.E.D.

The constant moment of velocity will be called h. It

is twice the area described in one second. If^ be the

length of the perpendicular from the fixed point on the

tangent, we shall have h = vp=r^d. A path described

with acceleration constantly directed to a fixed point is

called a central orbit, and the fixed point the centre of
acceleration. In a central orbit, then, the velocity is in-

versely as the central perpendicular on the tangent, for

v = h : p, and the angular velocity is inversely as the

squared distancefrom the centre, for 6 = h : r\

7—2
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EELATED CURVES.

Inverse. Two points p and q so situated on the radius

of a circle that cp .cq = ca^, are called inverse points in

regard to the circle.

If p moves about so as to trace out any curve, q will

also move about, and trace out another curve ; either of

these curves is called the inverse of the other in regard to

the circle.
' The inverse of a circle is in general another circle

;

but it coincides with its inverse when it cuts the circle

of inversion at right angles, and
the inverse is a straight line

when it passes through the centre

of inversion. We know that

cp.cq = cf,

which proves the second case

;

the first is easily derived from
it; and the third follows from
the similarity of the triangles

cmp, cgh, which gives

cp.cq = cm . cb,

which is constant and therefore = cd? = ca^.

In the second case the circle

clearly makes equal angles with

cpq at p and q. In general, two
inverse curves make equal angles

with the radius vector at corre-

sponding points. For we can

always draw a circle to touch the

first curve at p and to pass

through q\ such a circle is then

its own inverse, and makes equal

angles at j) and g- with cpq. More-
over it touches the second curve

at q, for as two points of inter-

section coalesce at p, their two
inverse points coalesce at q. Hence
the two inverse curves make equal

angles with cpq.
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Pedal. The locus of tlie foot of the perpendicular frpm

a fixed point on the tangent to a curve is called the

pedal of the curve in regard to that point.

Let two tangents to the curve intersect in p, ct, cf be
the perpendiculars on them.

Because the angles ctp, ct'p

are right angles, a circle on
cp as diameter will pass

through tt'. Now let the

two tangents coalesce into

one ; then p will become a

point on the curve, and l^t

will become tangent to the

pedal, and also to the circle on cp as diameter. There-

fore the angle ctu = cpt, where tu is tangent to the pedal

at t.

JReciprocal. The inverse of the pedal of a curve, in

regard to the same point, is called the reciprocal

,curve.

Let s be the inverse point to t, and sn the tangent

to the locus of s. We know that tu and sn make equal

angles with est ; therefore

csn = ctu = cpt.

Thus the triangles csn, cpt are

similar, ens is a right-angle,

and en : cs = ct : cp,

or cn.cp = cs. ct,

so that n, p are inverse points.

Hence p is a. point on the

reciprocal of the locus of s, or when one curve is reciprocal

to a second, the second curve is reciprocal to the first.

Hence the name, reciprocal.

We shall now shew that the reciprocal of a circle is

always one of the conic sections. For this purpose it

is necessary first to prove a certain property of these

curves.
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Two points s and h in the major axis of an ellipse, such

that sb = hb = ca, and consequently that cs^ = ch^= ca'— ch'\

are called the foci of the curve. Draw ^m perpendicular

to the axis from any point ^ of the curve, and take

so that

en : cm = cs : ca,

en . ca = cm . cs.

Then we shall prove that sp = an. For

cb^
sp^ = sm^ +pm^ = (cs — cmf + —^ (ca^ — cm^)

CCL

= (cs — cmy + ca^— cs^— cm!'+ cn'= — 2cs . cm + ca^+ cn^

= — 2ca . en + c<f + cr^ = an^.

Similarly hp = na'. Therefore sp + hp = aa', or the sum
of the focal distances of any point on the ellipse is equal

to the major axis. If we take

cd : ca = ca : cs— cm : en,
'

we shall have na : md — ca : cd,

and since pl = md, we have

sp : pl= ca : cd = cs : ca.

The ratio cs : ca is called the eccentricity of the ellipse,

and sometimes denoted by the letter e, so that sp = e . pi.

The line dl is called the directrix.

Thus we see that the ellipse is the locus of a point
whose distance from a fixed point (the focus) is in a
constant ratio to its distance from a fixed line (the

directrix). The distance from the focus is less than that
from the directrix.
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A precisely similar demonstration applies to the
hyperbola ; the points s and h being so taken that

cs = hc = ce,

and consequently cs' = ca^ + c6^ Then

sp^ = sm^ + pnv' = {cs — cnif H .^
(cm* — ca^)

= (cs — C7ny + cn^ — cn^ — ci + co^ = an

as before. So hp = an, and hp— sp = aa. On the other

branch we should find sp — hp = aa', or the difference of
the focal distances of any point on the hyperbola is equal

to the major axis. Taking cd : ca = ca : cs, and drawing

pi perpendicular to dl, we find as before that

sp : pl = cs : ca.

Thus in the hyperbola also the dis-

tance from the focus is in a constant

ratio to the distance from the direc-

trix dl, but the ratio in this case is

greater than unity.

In the parabola we know that pnf
varies as am ; take a point s on the

axis so that pm^ = 4as . am. Then

sp^ = sm" +pm? = sm' + 4a5 . am

= sm^ + 4as . sm + 405* = dm\

if da = as. Hence sp=pl, or the parabola is the locus

of a point whose distance from the focus s is equal to

its distance from the directrix.
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We can now prove that the reciprocal of a circle is a
conic section, of which the centre of reciprocation is a focus.
Let s be the centre of recipro-

cation, st perpendicular to the

tangent qt of the circle. Then
the reciprocal curve of the

circle is inverse to the locus of

t ; and the size of the circle of

inversion wiU evidently afi'ect

only the size, not the shape,

of the curve. Let d be the

inverse point to c, then if

sp .st = sc . sd,

p will be a point on the reciprocal curve. Now

sc.sd = sp .st = sp {sn + cq) = sm .sc + sp .ca

(since sp : 8m = sc : sn) ; or sp . ca = sc {sd—sm) = md . sc.

Therefore sp : pl = sc : ca, or the locus of p is a conic

section having s for focus, dl for corresponding directrix,

and sc : ca for eccentricity. Hence if s is within the

circle this conic is an ellipse, if on the circumference a
parabola, if outside the circle a hyperbola.

Since the reciprocal is the inverse of the pedal, and

the inverse of a circle is a circle except when it passes

through the centre of inversion, it follows that the

pedal of a conic section in regard to a focus is a circle

in the case of the ellipse and hyperbola, and a straight

line in the case of the parabola. We may prove this

independently thus. The tangents to an ellipse or hyper-
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bola make equal angles with the focal distances r, r, , for

since r ±r^ is constant, r=^r^; now r is the component
of velocity of p along sp, and r^ along hp, and these

being equal in magnitude, it follows that spy = hpz. Pro-
duce hp to w, making pw = ps, so that hw = ad. Then sw
is perpendicular to py which bisects the angle spw.

Hence sy is ^sw, and sc = ^sh, therefore cy = \hw = ca, or

the locus of y is the circle on ad as diameter. This is

called the auxiliary circle.

ACCELERATION INVERSELY AS SQUARE OF DISTANCE.

When the acceleration is directed to a fixed point, the

hodograph is the reciprocal of
the orbit turned through a right

angle about the fixed point.

Let py be tangent to the orbit,

.9 the fixed point, su the velo-

city at p, sy perpendicular to

py. Then we know that

su .st/ = h,

which is constant. Hence if we mark off sr on sy, so that

sr = su, we shall have sr.sy = h, and therefore the locus of

r is the reciprocal of the orbit. But the locus of u is the
locus of r turned through a right angle.

When the acceleration is inversely as the square of the

distance from the fi^ed point, the hodograph is a circle

(Hamilton). Let the acceleration/= /j, : r^, so that^r'' = fi.

We know that r^0 = h, therefore/ : d = fji, : h, or the ac-

celeration is proportional to the angular velocity. Now the

acceleration is the velocity in the hodograph, whose direc-

tion is that of the radius vector in the orbit ; so that the

angular velocity, which is the rate at which the radius

vector turns round, is also the rate at which the tangent

to the hodograph turns round. Since then the velocity in

the hodograph is in a constant ratio to the rate at which
its tangent turns round, the curvature of the hodograph
is constant and equal to h : fjt. Therefore the hodograph
is a circle of radius

fj.
: h.
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Hence it follows directly that when the acceleration is

inversely as the squared distance, the orbit is a conic

section having the centre of acceleration for a focus.

Now we have

ys . sy = as . sa = cd^ — cs^ = ch^
;

and moreover ys.v=h; whence sy' : v = ch^ : h. Hence
the auxiliary circle is to the hodograph (in linear dimen-
sions) as cb^ : h\ or h.ca : fjb = ch^ : h; or h^ : fjb

= c¥ : ca.

If I'sl be drawn through s perpendicular to the major axis,

W is called the latus rectum; and we have

sl^ : c¥ = as . sa' : ca^ = df : ca^,

or si = cU^ : ca. Hence h^ : jx is the semi-latus rectum.

The periodic time T in the ellipse is to be found from
the consideration that h is the area described in two
seconds, and the area of the ellipse (tt . ca . cb, orthogonal

projection of area of circle, ir . ca^) is described in T seconds.

Hence T=27r.ca.cb : h;

but cJf = h^. ca : fi or cb — h. sjca : sjjx.

Therefore T=2TT . ca j^fi or ixT'^= ^ir^.ca^.

Consequently, in different orbits, if fi is the same, the

square of the periodic time varies as the cube of the major
axis.

Kepler stated three laws as the result of observa-

tion of the planets. 1st, each planet describes about the

Sun areas proportional to the times. 2nd, each planet

moves in an ellipse with the Sun in one focus. 3rd, the
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squares of the periodic times of different planets are to

one another as the cubes of the major axes of their orbits.

From these laws Newton deduced, 1st, that the acceleration

of each planet is directed towards the Sun ; 2nd, that the
acceleration of each planet is inversely as the square of

its distance from the Sun ; and 8rd, that the acceleration

of different planets is inversely as the square of their

distances from the Sun, since fi is constant.

Kepler's laws and these deductions from them are
however only approximately true.

ELLIPTIC MOTION.

Motion in an ellipse with acceleration always directed

to one focus is called, par excellence, elliptic motion.

The angle asp is called the true anomaly, and is

denoted by d.

If qpm be drawn perpendicular to the axis, meeting
the auxiliary circle in q, the

point q is called the eccentric

follower of p. Since the

area asp is the orthogonal

projection of asq, the latter

is always proportional to it,

and therefore to the time ; therefore q moves in the auxil-

iary circle^ with acceleration always tending to s.

The angle acq is called the eccentric anomaly, and is

denoted by u.

The mean angular velocity is also called the mean mo-
tion, and is denoted by n. The angle nt is called the mean
anomaly.

It is clear that

nt : 2ir = area asp : ir.ca.ch^ area asq : tt . ca".

Now asq = acq — scq = ^u.ca^ — ^cs.qm

= \u.ca^—\e.ca.ca sin u = \ca? {u — e sin u).

^ On circular orbits with acceleration to a fixed point or points, see

Sylvester, Astronomical Prolusions, Phil. Mag. 1866.
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Therefore nt = u — e sin u;

an equation connecting the mean and eccentric anomalies.

The tangents at p and q meet the axis in a point t

such that cm . ct = ca^. Let them meet the tangent at a in

f, g respectively. Then the tangents fa, fp to the ellipse

subtend equal angles^ at the focus s, and the tangents ga,

gq to the circle subtend equal angles at the centre c. Con-
sequently angle asf— ^ 6, and acg = ^u. We find therefore

tan ^^ = af : as, and tan ^u = ag : ac, so that

tani^ : tsm ^u = af.ac : as .ag = /^(l —e^) :l — e.

/1+e
Therefore tan \Q=, . . tan \

u

;

an equation connecting the true and eccentric anomalies.

We know that sp = an, if en = e. cm; so that, denoting sp

by r, we have r = a{l — e cos u), which gives the distance in

terms of the eccentric anomaly, and a the semi-major axis.

Lambert's theorem.

The time of getting from a point j9 to a point q in an
elliptic orbit may be expressed in terms of the chord pq,
and the sum of the focal distances sp + sq; a result which
is called Lambert's Theorem. The following proof is due
to Prof. J. C. Adams.

Let r, r be the two focal distances, u, u the eccentric

anomalies, k the length of the chord. Regarding the

chord as the projection of the corresponding chord of the

auxiliary circle, we see that its horizontal component is

a (cos u — cos u) and its vertical component is

a \/(l — e^) (sin u — sin u')

;

for the vertical component is reduced by the projection in

the ratio a : b, which is 1 : ^(1 ~^^)' Hence

k' = a^ (cos u — cos u'f + a^{l- i) (sin u — sin w')*

= ^c^ sin' \{u — u) sin'^{u+ u')

+W (1 - e') sin' ^{u- u') cos' |(m + u)

= 4a' sin' \{u — u') {1 — e' cos' ^ (w + u')].

1 Because cm.ct=ca^, it is easy to shew that ta : am=ts : an, and
therefore that tf:fp = t8:sp, so that sf bisects the angle asp.
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Now let M — w' = 2a, and let /3 be such an angle that
e cos ^ (w + u) = cos /S. Then k = 2a sin a sin /3,

Moreover,

r + r=2a{l — ^e (cos w + cos w')]

= 2a{l — e cos |(w - w') cos J (w + w')}

= 2a (1 — cos a cos /3).

Therefore

r + / + ^ = 2a (1 - cos ^) if = ^ + a,

and r + r'~k = 2a(l — cos ^) if ^ = y8 — a.

Now nt = u — u — e (sin m — sin w')

= 2a — 2e sin ^ (t* — w') cos | (m 4- w')

= 2a — 2 sin a cos )S = ^ — sin ^ — (0 — sin ^).

Thus wi is expressed in terms of 6 and ^, which are them-
selves expressed in terms of r + r', k, and a. Because
wT=27r, it follows that n^a^ = fi; so that the time is given
in terms of r + r', k, a, and fi, the acceleration at unit dis-

tance.

The angle' a is half the angle subtended at the centre

by the corresponding chord of the auxiliary circle.

If, keeping the focus and the near vertex fixed, we make
the major axis of the ellipse very large, while the points

p, q remain in the neighbourhood of the focus ; the ellipse

will approximate to a parabolic form, and the angles w, u'

will become very small; so therefore will a and y3, and
consequently 6 and <^. Hence we shall have approximately

nU =d- sin d-{^- sin <^), = ^ {d^-f),

r + r' + h, =2a(l-co9^), =ad'\

r + r —k, = 2a (1 — cos ^), = a<j)\

and wV = /* always. Therefore

Qt^fi = {r+r+kf- (r + r'-k)^,

with an approximation which becomes closer the larger a
is takea, and which becomes exact when a is infinite, or

the ellipse becomes a parabola. This, therefore, is the

form of Lambert's theorem for the parabola. An analogous
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theorem for the hyperbola will be found in the paper
referred to\

GENERAL THEOREMS. THE SQUARED VELOCITY.

In general, if a point _p be moving with acceleration/
always tending from s, the resolved

part of the acceleration along the tan-

gent is /cos 5p^=/cos i/r, say; there-

fore V =/cos -yjr. Now the resolved

part of the velocity v along sp is r,

so that r = v cos '\^. It follows there-

fore that fr = vv = df(^v^). If the

acceleration / depends only on the

distance, so that / is a function of r, we may be able to

find Jfrdt or Jfdr, and thence ^ v^ to which it is equal.

Suppose, for example, that f=fjLr~'^, then {n — l)Jfdr
= — /ir"""^^ + some constant c, or ^ (n — 1) v^ + fir~^*^ = c.

Since vp = h, this equation gives us a relation between r

and p which determines the form of the orbit.

In the elliptic motion we have ^ v^ = fir'^ + c, the

acceleration being towards the focus ; and the constant c

may be determined by means of the velocity at the extre-

, mity of the minor axis, where r = a and vh = h. Here

^ h^ = ^ v'^b'^ = fxa'^b^ + cb^, but we know that h^^jxar^b',

therefore c = — |/ia"^ and the formula becomes

I (v^ + iia^) = /ir"\

The analogous formula for the hyperbola is

I {v" - p.a^) = lxr-\

which may be found by considering the velocity at an
infinite distance, when the point may be regarded as

moving along the asymptote.

Since a parabola may be regarded as an infinitely long

ellipse or as an infinitely long hyperbola, we find the cor-

responding formula for that case by making a infinite in

^ Messenger of Mathematics, 1877.
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I

either of the two others, viz. | v^ = ixr~^ ; in this case the

velocity at an infinite distance is zero.

We see then that when a point starts from the position

JO at a distance r from s, and moves with acceleration fir^

always tending to s ; if the velocity at starting is /^{2fxr~^),

the path will be a parabola ; if less than this, an ellipse

with semi-major axis given by the formula fioT^ = 2/j,r~^ — v^\

if greater, an hyperbola with semi-major axis given by the

formula yu,a~^ = •y"'^ — 2/xr~\ The major axis of the orbit

depends only on the velocity, not at all on the direction,

of starting.

A special case of elliptic motion is that in which, the

direction of starting being in

the line s'p, the ellipse re-

duces itself to a straight line.

The foci then coincide with the

extremities of the major axis,

the eccentricity e = 1, and the

motion is the projection on aa
of motion in the circle with ac-

celeration tending to a. Writing

X for a'p, and u for the angle

acq^, we have

. . o • -1 ^ N/C2aa; - .t'')

ic = a (1 — cosM), wi = M — sm w = z sm = ;

from which equations it may be verified with a little

trouble that xa? = — nV. It fol-

lows that if from a point p in the

ellipse a point be started with the

velocity belonging to the elliptic

motion in the direction sp, and
have always an acceleration iir'^,

it will ascend to a point r such

that sr = aa', and then return to p
with the same velocity; so that

the velocity at any point of the

ellipse is that due to a fallfrom the

circle rk. If we join ph and pro-

duce it to cut the ellipse at q, we have ph =pr, hq + s^
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= OjCb = ST, and therefore 'pq^ + sq =pr + sr. Hence if an
ellipse be described with the foci s, p, to touch the circle

at r, it will pass through q and touch the ellipse ^g* at that

point (since both tangents must make equal angles with

sq, hq). Thus all the orbits which can be described frouip

with given velocity touch an ellipse having foci s, p and
major axis sr+pr. Or, in purely geometrical terms,

given a focus, one point, and the length of the major axis

of an ellipse, its envelop is the ellipse here specified.

In the case of the further branch of a hyperbola de-
scribed with accelerationyrom
the focus, the velocity is that

due to a fall out from the

circle rk, from r to p. We
have again ph — pr, and
sq — hq = sr, therefore

sq—pq = sr — rp,

or 5' is on a hyperbola with
foci s, p, touching the circle at

r and the orbit at q.

When the nearer branch is described with acceleration

to the focus, the theorem be-

comes rather more complex.
If a point be started from p
in the direction sp, with the

velocity belonging to the hy-
perbolic orbit, and acceleration

from s, its velocity will approx-
imate to a certain definite

value more and more closely

as it gets further and further

away. If we now suppose a
point to approach from an in-

finite distance on the other

side of s, with a velocity more and more nearly equal to

the same value the greater the distance from s, but now
with acceleration from s, this point will come up to the
position r (where sr = aa), and there stop and go back.
So that if now we reverse this process, start a point from
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rest at r and make it fall through infinity to the point p, it

will arrive at p with the velocity belonging to the hyper-
bolic orbit. We have again ph = pr, sq — hq = sr, therefore

pq + 8q=pr +sr, or q lies on an ellipse with foci 5,^ touching
the circle at r and the further branch of the hyperbola at q.

Returning to the case of the ellipse, we know that if

it is lengthened out until one focus goes away to an infi-

nite distance, it will become a parabola. If however we
send away the focus h, the circle rk, having a fixed centre

s and a radius increasing without limit, will itself go away
to infinity ; and there will be no proper envelop of the
different parabolic paths which pass through p. In a
parabola described with acceleration towards the focus,

therefore, the velocity at every point is that due to a fall

from infinity ; or, as we may say, the velocity in the para-

bola is the velocityfrom infinity.

If, holding fast the focus h, we send s away to infinity,

all the lines passing through it become parallel, and their

ratios unity ; so that the acceleration becomes constant

in magnitude and direction, and we fall back on the

previously considered case of parabolic motion. Since

ha' is then = a'k, the circle rk becomes the directrix ; and
we learn that in the parabolic motion the velocity at any
point is that due to a fall from the directrix. The envelop

of the orbits described by points starting from a given

point with given velocity is a parabola having that point

for focus and touching the common directrix at r.

GENERAL THEOREMS. THE CRITICAL ORBIT.

We have shewn that when the acceleration f= fir'",

then ^ (n — 1) v* 4- /i/~" is a certain constant, c. For con-

venience, suppose that c = ^ (n — 1)m* where w is a certain

velocity ; then if we make r infinite, and suppose n greater

than 1, r^'" will be zero, and we shall have v=u. Hence
u is the velocity at an infinite distance ; and if the orbit

has any infinite branch, u is the value to which the

velocity of a particle going out on that branch would
indefinitely approach. If however n is less than 1 or

negative, /"" will be zero when r is zero, and in this ease

c. 8



114 DYNAMIC.

u is the velocity of passing through the centre of accelera-

tion. If we draw a circle with that point as centre, and
radius a determined by the equation | (w — 1) w" = /xa^"",

then in the case n > 1, the velocity at every point is that

due to a fall from this circle, either directly or through
infinity; and in the case n<l, the velocity is that due to

a fall from the circle either directly or through the centre :

it being understood that in passing through infinity or

through the centre the sign of yu, must be changed.

Just as when n=2 the parabola is a critical form of

orbit, dividing from one another the ellipses and hyper-

bolas, so in general, an orbit in which m = is called a

critical orbit. When n>l, the velocity at every point of

such an orbit is that due to a fall from an infinite distance

(in this case fi must be negative, or the acceleration

towards the centre) ; and when n< 1, the velocity is that

due to a fall from the centre, /x being positive and the

acceleration away from the centre. In both cases

Since vp = h, we find ^ {n — l)h^ r""^ = fip^ ; or the orbit

is of such a nature that p varies as a power of r. Con-
versely, in any curve in which p varies as a power of r, we
can find the acceleration with which it may be described

as a critical orbit.

Now this is the case when r*" = a"* cos mO. For we
know that the resolved parts of the velocity of P, along r

and perpendicular to r respective-

ly, are r and ?'^. Consequently

-tan 'v|r=r^:r. Butif r'"=a"'cosm^,

we must have r'"~^ r = — a™^ sin mO,

so that cot md = — r6 : r = tan yfr.

Therefore cos mO = sim/^ =^ : r, or

a'^p = r'"'^\ Comparing this with

our previous expression, we find

2m + 2 = n-^l, or m = ^{n-S),

and a"" == ^ (n-l) Ji" : fi, or oT = h a/^^^ • Changing

the sign of m is equivalent to taking the inverse curve,

since it replaces r by a^ : r. We subjoin a list of curves

T p

;^/
-^

P

/ 1
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belonging to this class, observing that each is the pedal,

the inverse, and the reciprocal of another curve of the
series.

Caxdioid. Lemniscate.

w = — 1, {n=l); straight

line (exceptional).

m = — ^, n = 2; parabola

with focus at s.

m = — 2, n = — 1; rectan-

gular hyperbola with
centre at s; is its own
reciprocal.

m=l, n = 5 ; circle passing

through s.

m = |, w = 4; "cardioid,"

pedal of circle in regard

to s ; inverse of para-

bola.

m = 2, w = 7 ;
" lemniscate,"

inverse and pedal of

rectangular hyperbola.

(hyperbola with perpendi-

cular asymptotes).

The straight line, as we know, cannot be described

with acceleration to any point out of it ; and in fact the

case w = l, which the formula points to, is an exceptional

one. From f= /j. : r, d^ (^ v^) =fr = /j,r : r, we deduce^

^v^ = fji log r or h^= 2fip^ log r, which is not a curve of the

kind here considered.

Another exceptional case is the logarithmic spiral, in

which r is proportional to p, and consequently n = 3,

m = 0. A point started from a given position with the

velocity from infinity and acceleration fir~^ will describe a

logarithmic spiral, in which the only thing that can vary

is the angle at which it cuts all its radii vectores. In
particular, if the point start at right angles to the radius

vector, it will describe a circle.

If we write z = x + iy, and ^= ^+ irj, supposing x + iy

1 If aj=Iogy, then y=c\ and y-i<.'=iy\ hence i=y:y, or

p:y = dAogy.

8—2
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to be the position-vector of a point z in one plane, and
^\-iT] of a point ^ in another plane, then any relation

between z and ^ will enable us to find one of these points

from the other ; and if z move about describing any figure

in its plane, ^ will describe a corresponding figure in its

plane. Now if 5"= ^", and one of the points describe a
horizontal or vertical line, the other will describe a cri-

tical curve. For we may write z = re^, f = se'*, then
we shall have se^ = r"e*"*, whence s cos ^ = r" cos n6, and
s sin

(f)
= r'* sin n0. Suppose then that ^ moves in a verti-

cal line, so that f, = s cos cf), is kept constant, then r" cos n6
is constant, or z describes a critical curve. If ^ moves in

a horizontal line, so that 7], = s sin
(f),

is kept constant, then
f" sin nd is constant, which gives the same curve turned

through an angle tt : 2n.

EQUATION BETWEEN U AND 0.

Let, as before, SP be denoted by r, ST by p, TP by q^

and let ^ be.the angle which PT makes with a fixed line.

The components of velocity of

T along ST and TP, are p
and p^. But the components
of velocity of T relative to P
are q(ji and q in those direc-

tions ; and the velocity of P
is s along TP. Hence we
have p = q^, or q = d^p ; and

s — q=p^, or

d^s =p + d^q = p + d^^p.

This value of the radius of cui-vature d^s is often useful.

We may for example apply it to the hodograph of a
central orbit. Let the letters r, p, 6, ^, refer to the orbit,

and let r^, p^, 0^, <j>^, mean the corresponding quantities in
regard to the hodograph. Then we know that r^ = v, and
rpj = r^p = h, so that writing u for the reciprocal of r, or
ur = 1, we have p^ = hu. Moreover (p^ = 6, and the radius

of curvature of the hodograph =/ : ^^ =/ : =/ : AM^
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Making these substitutions, tlie formula becomes

AV {de'u + u) =f.

This formula connects the law of acceleration with the

shape of the orbit, independently of the time of descrip-

tion.

By means of it we may prove a useful proposition rela-

ting to the effect of adding to the acceleration with which
a given orbit is described a new acceleration, directed

to the same centre, inversely as the cube of the dis-

tance. We shall then have h^u^ {de'u + u) =f—/j,u'^, or if

fi = h^ {rv' - 1), then AV {dg'u + n^u) =/. Now let <^ - nO,

then <p = n0 and dgu = u : = nu : ^ = nd^u, so that

3/w = n^d^u. As hu^ = ^, a change of 6 into ^ would
change h into nh ; now the equation is wViV (d^u + u) =f.
Thus in the new state of things, when the value of u is the

same as before, 6 is changed into nd. Therefore the same
effect may be produced by letting the point move as

before in its original orbit, while that orbit turns round
the point s with n — 1 times the angular velocity of the

moving point.



BOOK 11. KOTATIONS.

CHAPTER I.

STEPS OF A RIGID BODY.

There are two kinds of motion of a rigid body which are

comparatively simple, and which it is convenient to study
first by themselves. The first is the motion of a body
sliding about on a plane {e.g. a book on a table), which
may be completely described by specifying the motion of

a moving plane on a fixed plane. The second is the

motion of a body, one point of which is fixed ; which in

practice is secured by a ball-and-socket joint, and which
is most conveniently studied under the form of the slid-

ing of a spherical surface on an equal spherical surface.

When the centre of a sphere is very far away from the

surface, the surface approximates to that of a plane. Thus
the frozen surface of still water is approximately spherical,

with its centre at the centre of the earth. In this way
we may see that the first of our two motions is only a
limiting case of the second, in which the fixed point is an
infinite distance off.

As in the case of translations we shall at first attend
only to the change of position or step which the body makes
between the beginning and end of the time considered,

without troubling ourselves about what has taken place

in the interval.

In the case of a plane sliding on a plane, the motion
is determined if we know the motion of two points

a, h, or the finite line ab. So in a sphere sliding on an
equal sphere, the motion is determined if we know the
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motion of the arc of great circle ah. (A great circle on a
sphere is one whose plane passes through the centre.)

Every change of position in a plane sliding on a plane
may he produced either by translation or hy rotation about a
fixed point. Let the straight

line ab be moved to a'b'\ it

will be sufficient if we prove

that this step can be effected

in the way named, since the

motion of all the rest of the

plane is determined by that

of ah. Join aa! , 66'and bisect

them at right angles by the

lines CO, do. First, let these

meet in o. Then oa = oa, and oh = oh' ; and of course

ah = ab'; so that the triangles oab, oa'h' have their sides

respectively equal, and therefore the angle aoh = a oh'.

Hence also angle aoa =hoh'. Therefore if the triangle

oah be turned round the fixed point o, until oa comes to

oa', oh by the same amount of turning will come to oh',

and consequently the triangle oah will come to coincide

with oa'h'.

Next, suppose that the lines bisecting aa', hh' at right

angles are parallel to one an-

other. Then aa', hh' are parallel,

and consequently either ah is

parallel to ah', and the required

step is a translation, or else they
make equal angles with aa', hh',

and one can be brought to co-

incide with the other by rotation

round their point of intersection "

0. In the latter case the bisecting lines coincide, and the

point is not determined by their intersection.

Tw.o figures which are equal and similar are called

congruent. If they can be moved so as to coincide with

each other, they are called directly congruent ; but if one

is the image of the other in a plane mirror they are said

to be inversely congruent,, or one is a perversion of the
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other. Two plane figures wliicli are inversely congruent

can be moved into coincidence by taking one of them out

of its plane and turning it over ; this does not make them
directly congruent in regard to the plane.

It is essential to the preceding demonstration that the

two triangles oab, oa'b' should be directly congruent. Now

if they were inversely congruent, as in this figure, the lines

bisecting aa and bb' at right angles would coincide, con-

trary to the supposition.

It is to be observed that the case of translation occurs

when the lines co, do are parallel,

that is, when their point of in-

tersection has been sent off to

an infinite distance. Thus a step

of translation may be regarded

as a step of rotation round an
infinitely distant point.

Every change ofposition in a sphere sliding on an equal

sphere may be produced by rotation about a fixed point.

The proof is exactly the same as before, except that

straight lines are to be replaced by great circles of the

sphere, and that the case of co, do being parallel does not

occur ; for any two great circles intersect in two opposite

points of the sphere, say o and o'. Rotation about o is

rotation about the axis oo', therefore also about o'. The
theorem may be also stated thus: every displacement of a

body having one point fixed may be produced by rotation

about an axis through that point. The fixed point is of

course the centre of the sphere.
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Every displacement of a rigid body may be produced by
rotation about a fixed axis together with translation parallel

to the axis (screw motion). Let a be any point of the

body whose new position is a ; then we can produce the

whole displacement by first giving the body a translation

aa', and then turning it about a' as a fixed point. The
latter step can be effected by rotation about an axis

through a'. Now consider those points of the body which
lie in a plane perpendicular to this axis. By the rotation

they are merely turned round in that plane ; while by the

translation the plane was moved parallel to itself. Hence
the new position of this plane is parallel to its original

position. Let then the body have first a translation per-

pendicular to the plane, so as to bring the plane into its

new position ; then the remaining displacement consists of

a sliding of this plane on itself, which may be produced

by rotation about a fixed point of it, or, which is the same
thing, about an axis perpendicular to the plane. Thus the

whole displacement is produced by rotation about that

axis, together with translation parallel to it.

If two plane polygons, which are perversions of one
another, be rolled symmetrically along a straight line, one
on each side, until the same two corresponding sides come
into contact, the result will be merely a translation of each

along the line through a distance equal to its perimeter.

Hence successive finite rotations through angles equal to

the exterior angles of a polygon about successive vertices

(taken the same way round) are equivalent to a translation

of length equal to the perimeter. By supposing one
polygon fixed, and the other to roll round it, we find that

successive rotations about the vertices through twice the

exterior angles will bring the plane back to its original

position.

The corresponding theorems for a spherical surface are

easily stated.
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SPINS.

When a body is rotating about a fixed axis with an-

gular velocity co, every point in the body
is describing a circle in a plane perpendi-

cular to the axis, whose radius is the per-

pendicular distance of the point from the

axis. Hence the velocity of the point is in

magnitude tu times its distance from the

axis, and its direction is perpendicular to

the plane which contains the axis and the

point.

If ab be the axis, pm perpendicular to it, the velocity

of jj is CD times mp perpendicular to the plane pab. If,

therefore, we represent the angular velocity (o by means
of a length ab marked off on the axis, the velocity of p is

ab multiplied by mp, which is the moment of ab about p,
being twice the area pab.

In the case of a plane figure, the rotation being about
an axis perpendicular to the plane, or say about a point m
in the plane (where it is cut by the axis),

the velocity of any point p is a . mp in

magnitude, but perpendicular to mp ; that

is, it is ico . mp, the angular velocity being

reckoned positive when it goes round counter clockwise.

When a body has a motion of translation, the velocity

of every point in it is the same, and that is called the

velocity of the rigid body. But in the case of rotation, the



ROTORS. 123

velocity of different points of the body is different, and we
can only speak of the system of velocities, or velocity-

system, of its different points. Still, the velocity-system

due to a definite angular velocity about a definite axis is

spoken of as the rotation-velocity, or simply the velocity of

a rigid body which has that motion. To specify it com-
pletely we must assign its magnitude and the position of

the axis ; it is thus represented by a certain length marked
off anywhere on a certain straight line. For it clearly

does not matter on what part of the axis the length ah is

marked off; its moment in regard to p will always be the
velocity of p. A rotation-velocity, so denoted, shall be
called a spin.

Such a quantity, which has not only magnitude and
direction, but also position, is called a rotor (short for

rotator) from this simplest case of it, the rotation-velocity

of "a rigid body. A rotor is a localised vector. While the

length representing a vector may be moved about any-

where parallel to itself, without altering the vector, the

length representing a rotor can only be slid along its axis

without the rotor being altered.

Two velocity-systems are said to be compounded into a
third, when the velocity of every point in the third system
is the resultant of its velocities in the other two.

COMPOSITION OF SPINS.

The resultant of two spins I, m about the points a, h

in a plane, is a spin {I + m) about a
point c, such that Z . ca + w . c6 = 0.

For the velocities oip due to the two
spins are il . ap and im . bp, and their

resultant is consequently i {I +m)cp;
that is, it is the velocity due to a spin l + m about c.

It should be observed that the result holds good what-
ever be the signs of Z, m; but that, if their signs are
different, the point c will be in the line ab produced.
There is one very important exception, when the spins
are equal but of opposite signs; the resultant is then a
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translation-velocity. Let the spins

be I, — I, then

il . ap — il . bp = il (ap — hp) = il . ah.

Thus the velocity of every point p is

the same, namely it is of the magni-
tude I . ah and is perpendicular to ah.

Translating these results into language relating to

axes perpendicular to the plane, we
find that the resultant of two parallel

spins Z, m is a spin of magnitude
equal to their sum, about an axis

which divides any line joining them
in the inverse ratio of their magni-
tudes. But the resultant of two equal

and opposite parallel spins is a trans-

lation-velocity, perpendicular to the plane containing them,

of magnitude equal to either multiplied by the distance

between them.
It follows that if we compound a spin I with a trans-

lation-velocity v perpendicular to its axis, the effect is to

shift the axis parallel to itself through a distance v : Hn a
direction perpendicular to the plane containing it and the

velocity.

A translation-velocity may be regarded as a spin about

an infinitely distant axis perpendicular to it. Hence all

theorems about the composition of translation-velocities

with spins are special cases of theorems about the compo-
sition of spins.

The resultant of two spins ohout axes which meet is a
spin about the diagonal of the parallelogram whose sides

are their representative lines, of the magnitude repre-

sented by that diagonal. In other

words, spins whose axes meet are

compounded like vectors. For if

ah, ac represent the two spins,

and ad is the diagonal of the

parallelogram acdb, the velocities

of any point p due to the two
spins are the moments of ah and
ac about p, and the resultant of
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them is the moment of ad about p, that is, it is the velo-

city due to a spin ad.

It follows from this that the resultant of any number
of spins whose axes meet in a point is also a spin whose
axis passes through that point. And that if i, j, k are

spins of unit angular velocity about axes oX, o Y, oZ at

right angles to one another, any spin about an axis through

may be represented by xi + yj + zk, where x, y, z are

magnitudes of the component spins about the axes oX,

oY,oZ.

VELOCITY-SYSTEMS. TWISTS.

If a rigid body have an angular velocity &> about a
certain axis, combined with a translation-velocity v along
that axis, the whole state of motion is described as a twist-

velocity (or more shortly, a twist) about a certain screw.

We may in fact imagine the motion of the body to be
produced by rigidly attaching it to a nut which is moving
on a material screw. The ratio v : oj is called the pitch

of the screw ; it is a linear magnitude (of dimension [L]

simply), and we may cut a screw of given pitch upon a
cylinder of any radius. The pitch is the amount of trans-

lation which goes with rotation through an angle whose
arc is equal to the radius. For our present purpose it is

convenient to regard the axis of the rotation as a cjdinder

of very small radius, on which a screw of pitch p is cut.

The screw is entirely described when its axis is given, and
the length of the pitch. The angular velocity w is called

the magnitude of the twist.

The velocity of a point at distance k from the axis is

Tc<o perpendicular to the plane through the axis, due to the
rotation, and v parallel to the axis, due to the translation.

If the resultant-velocity makes an angle 6 with the axis,

we shall have tan 6 = ka) : v = k : p. Thus for points very
near to the axis, the velocity is nearly parallel to it ; for

points very far off, nearly perpendicular to it ; and for

points whose distance is equal to the pitch of the screw, it

is inclined at an angle of 45",

A quantity like a twist-velocity, which has magnitude,
direction, position, and pitch, is called a motor, from the
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twist-velocity which is the simplest example of it, and
which, as we shall see, is the most general velocity-system

of a rigid body.

COMPOSITION OF TWISTS.

The resultant of any number of spins and translation-

velocities is a twist. Take any point o, and
let ab represent one of the spins. Then ab

is equivalent to an equal spin about the

parallel oc, together with a translation-

velocity which is the moment of ab about o.

In the same way every other spin of the

system may be resolved into a spin about
"

an axis through o and a translation-velocity. Then all the

spins will have for resultant a spin about an
axis through o, and all the translation-velocities

will have for resultant a translation-velocity.

Let as be the resultant spin, and ot the resultant

translation-velocity ; then ot may be resolved

into om along os and mt perpendicular to it.

The effect of combining the spin os with mt is

to shift its axis parallel to itself perpendicular to the plane

sot through a distance mt : os. Thus we are left with a
spin about an axis parallel to os and a translation along

that axis ; that is to say, the resultant is a twist.

It follows, of course, that the resultant of any number
of twists is also a twist. We
shall now determine the

axis and pitch of the resul-

tant of two twists\ It is

convenient to suppose in the

first place that the axes of

the twists intersect at right

angles. Let then oX, o F be
these axes, a, yS the magni-
tudes of the twists, a, b their

pitches, OT, p, the magnitude
and pitch of the resultant twist, Jc the distance of its axis

1 This theory, and most of the nomenclature of the sub'ect, are due
to Dr Ball.
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from the point o, 6 the angle it makes with oX. Then
a = z!7Cos^, /3 = wsin^, the two spins a, /3 about oX,oF
compounding into a spin •sr round oP. The translations

due to these spins are ai, b^, or -oracos^, sybsind, along

oX, Y. The sum of their resolved parts along OP
= 'Bracosd .cosd -i- vrb sin d .aind ='bt {acos^d+ 6sin'^).

The sam of their resolved parts perpendicular to OP
= ura COS0 . sind — 'srb sin d . cosO = |ot {a — b) sin 2^.

The latter part shifts the axis OP parallel to itself in a
direction perpendicular to the plane through a distance

k, = i(a-b) sin 20.

The former part shews that the pitch of the resultant

twist

p, = a cos'' + b sin'' 0.

Now let a circle be drawn through o and two points

A, B on oXand o F equidistant from o. The centre c is

the middle point of A B. Then since is the angle at the

circumference AoP, 20 is the angle at the centre AcP,

and sin 20 =Pm : cA. If a cylinder be drawn upon this

circle, a plane through AB and a point vertically over C
at a distance J (« — &) will cut the cylinder in an ellipse,

and if Q be the point of the ellipse vertically over P we
shall have PQ = A;. For

PQ:Pm= Cd : Cc, Pm = Cc sin 20,
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and Cd=^ (a—b),

Avhence PQ = l{a — b) sin 2^ = k.

Hence zQ, parallel to oP, is the axis of the resultant

twist.

The angle depends npon the magnitude of the com-
ponent twists, not at all iipon their pitches. By varying

this angle then, we shall obtain the screws of all twists

which can be got by compounding twists upon the given

screws. If 6 varies uniformly, the line zQ, which is

parallel to OP, turns round uniformly, being always per-

pendicular to oZ; while the point z has a simple harmonic
motion up and down oZ, whose period is equal 'to that of

P in the circle. The surface traced out by the line zQ is

called a cylindroid. It is clear that if we cut the cylin-

droid by a circular cylinder having oZ for axis, the section

will be the bent oval previously obtained by wrapping
round the cylinder two waves of a harmonic curve (p. 35).

The line oZ is called the directrix of the cylindroid.

The pitch of each screw on the cylindroid depends

only on its position and the pitches of the two component
twists ; to represent therefore the distribution of pitch we
may attribute to these twists any absolute magnitude
that we like. We shall suppose their magnitudes to be
inversely proportional to the square roots of their pitches.

Let oa and ob be these magnitudes, and let the pitches be
represented by numbers on such a scale that the pitch of

oa is ob : oa, then the pitch of ob is oa : ob, since the

pitches are as ob^ : oa^. Then the translation accompany-
ing the spin oa will be represented by i . ob, and that

accompanying ob by i . oa or i . oa according as the two
pitches are of the same or different signs. In the first

case construct an ellipse, in the second a hyperbola, with

oa and ob for semi-axes ; then we shall shew that the

translation accompanying a spin op, regarded as com-
pounded of proper multiples of oa and ob, is i . oq, where
oq is the semi-conjugate diameter.

To prove this, we must observe that, pm and qn being
drawn perpendicular to the major axis, oin : oa = nq : ob.
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and ±on : oa= mp : oh. For
the ellipse this follows by-

parallel projection from the
circle, in which the property-

is obvious ; for the hyperbola
we know that

om = oa. he
(f),

on = oa .hs^, mp = oh.hs(ji, nq = oh. hc^,

where ^ is written for nt + e of p. 89.

Thus the spin op being equivalent to om and mp, the

translation due to cm is to i.ob as om : oa, that is, it is

i.nq; and the translation due to mp is mp : oh multiplied

by i . oa and i . oa in the two cases respectively, that is, it

is i . on. Hence the translation due to op is i . oq.

If we draw g'/ perpendicular to op, of : op will be the

height k of the screw which is parallel to op, and qf : op

will be its pitch. Now in the harmonic or quasi-harmonic

motion with acceleration towards the centre, n.po is the

velocity at q, and fq is equal to the perpendicular from the

centre on the tangent at q ; therefore the rectangle op .fq
is constant, and consequently equal to oa . ob. Hence

qf : op = oa.ob : op",

or the pitch of the screw parallel to op is inversely propor^

tional to the square of op.

This ellipse or hyperbola is called the pitch-conic.

"When the pitch-conic is a hyperbola, it follows that

there are two screws of pitch zero, namely those which are

C. 9
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parallel to the asymptotes. Thus in two cases the result-

ant twist is a pure spin. The distance from o of these is

1 and — 1 respectively. Thus the scale on which the
pitches have been reckoned is such that the unit of length

is half the distance between the axes of pure spin. When
the pitch of the screw on oX is zero, the pitch-conic "re-

duces to two lines parallel to oX; and there is no other

screw whose pitch is zero, except when that of oY is zero,

and then all the pitches are zero, the cylindroid reducing

to the lines through o in the plane Xo Y.

In order to shift the figure of the pitch-conic through
a distance k perpendicular to

its plane, we must add ki . oa

to the translation accompany-
ing the spin oa, and ki. oh to

that accompanying oh. Let

at = k . oh, and ht'= k. oa'

;

then the new translations are ot, ot', which are still along

conjugate diameters, because by similar triangles we have

mr : om = k.oh : oa and on : ns = k.oa : oh;

whence
om on

oa ' oa

mr ns

oh ' oh'

which is the condition.

The resultant of two twists whose axes are anyhow
situated is a twist about some screw which belongs to a
cylindroid containing the axes of the given twists. This

cylindroid we now proceed to find, supposing the two
screws given. Find the line which meets both of their

axes at right angles; this is the

directrix of the cylindroid. Draw
a plane through one of the axes

perpendicular to the directrix, and
a line in this plane parallel to the

other axis meeting the directrix.

Let oh be the first axis, og per-

pendicular to it, then * . oq will be
the direction of the translation

that goes with the spin about
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oh; let oa be parallel to the second axis, and i.op the

direction of the translation which together with a spin

about oa is equivalent to a twist about that axis. If p
be the pitch of the second screw, h the distance of its axis

from o, tan aop = p : h. Then the problem is to find an
ellipse (or hyperbola) having oa, oh for conjugate dia-

meters, and also op, oq. Or rather, having given that these

are the directions of two pair of conjugate diameters, it is

necessary to find the relative magnitudes of one pair.

For this purpose we observe that if p, q are points on
the conic, on : om=mp : nq, or the areas o/ij'? omp are

equal. Let po meet qn in q\ then

area omp : area onq = om* : o/i'

since they are similar. But onq : onq = nq : nq' so that

cm* : on^ = nq : nq'. Given q, this determines p, so that

the ratio op, oq is known. A conic described on these as

semi-conjugate diameters is similar to the pitch-conic.

Screws parallel to its axes compounded of the two given

screws will be the oX, oY oi the cylindroid.

The analytical solution is as foIlows\ Let p, q be the

pitches, k^, k^ the distances from o the centre of the

cylindroid, I, m the inclinations to oX, of the two screws,

h their distance and the angle between them. Then
from the equations

p = a cos"'^ l+b sin'^ I, q = a cos' m + h sin'"' m,

k^ = l{a — h) sin 21, k^ = ^{a — h) sin 2m,

we have to find a, h, I, m, k^^, k^ in terms of p, q, h, and 0.

Now
k = k^ — k^ = ^(a — b) (sin 21 — sin 2???)

= {a — b) cos {I + m) sin (I — m),

and k^^ -\- k^ = \{a — h) (sin 2? + sin 2m)

= {a — h) sin {L + m) cos
{J,
— m).

So also p — q = ^{a — h) (cos 21 — cos 2m)

^{h — a) sin (I + m) sin [I — m),

1 Ball, Theory of Screws, pp. 16| 17.

9-2
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and p + q = a + h + ^ (a - h) cos {21 + cos 2m)

= a + h + {a — h) cos (l + m) cos.(Z — m)

= a + b+h cos 6 (since l—m = 0).

Therefore A=+ (p - 5) ' = (a - 6)' sin" 6,

{q-p)coi6 = \-]-Tc^,

p — q = h tan Q + m)— h tan {21 — 6) ;

whereby a±h,Tc^± k^, I and m are expressed in terms of

p, q, \ and 0,

MOMENTS.

When a straight line moves as a rigid body, the com-
ponent of velocity along the line of every point on it is

the same. For consider two points, a, b ; the rate of change
of the distance ab is the difference of the resolved parts of

the velocities of a and b along ab. If therefore the length
ab does not change, this difference is zero. This com-
ponent of velocity of any point on the line may be called

the lengthiuise velocity of the line.

The lengthwise velocity of a line due to a given twist

is called the moment of the twist about
the line. Let Im, = k, be the shortest dis-

tance between the axis In of the twist and
the straight line mr. It will be sufficient

to determine the velocity of m along mr.

Now m has the velocity ka> perpendicular

to the plane mln, and pay parallel to In,

if <u be the magnitude and p the pitch of

the twist. Let 6 be the angle between
mr and In, then the resolved parts of these components

along mr are — kw sin 6 and -\- pw cos 6. Thus the mo-
ment of the twist about the line is co {p cos 6 — k sin 6).

The moment of a screw about a straight line is the

moment of a unit twist on that screw about the line.

Thus j9 cos ^ — A; sin ^ is the moment of a screw of pitch

p about a line at distance k making an angle 6 with its

axis.
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All the straight lines in regard to which a given screw

has no moment, are said to form a complex of lines belong-

ing to that screw. When a line belonging to the complex

is moved by a twist about the screw, every point in it

moves at right angles to the line.

All the lines of the complex which pass through a given

point lie in a given plane, namely, the plane through the

point perpendicular to its direction of motion due to a

twist about the screw. This plane passes through the

perpendicular from the point on the axis, and makes with

the axis an angle 6, such that tan 6=p : k.

Conversely, all the lines of the complex which lie in a
given plane pass through a certain point, at a distance

p cot 6 from the axis along a straight line in the plane

perpendicular to it. If any other line in the plane be-

longed to the complex, every point in the plane would
move perpendicularly to the plane, and the twist would
reduce to a spin about some line in the plane.

In the case when p=0, or the twist reduces itself to a

spin about its axis, the moment becomes — k sin 6, and
can only vanish if the line meet the axis {k = 0), or is

parallel to it (sin ^ = 0), which is the same as meeting

it at an infinite distance. Hence the complex reduces

itself to all the lines which meet the given axis.

All the lines of the complex which meet a given

straight line, not itself belonging to the complex, meet
also another straight line. For, suppose the cylindroid

constructed, which contains the given screw and the given

straight line, considered as a screw of pitch 0. Then the

pitch-conic must be a hyperbola, since there is one screw

with pitch ; this is parallel to one asymptote, and there

must be another parallel to the other asymptote. Hence
every twist may be resolved into two spins, the axis of one

of which is any arbitrary straight line, not belonging to its

complex. Now, since the two spins are equivalent to the

twist, the lengthwise velocity of any line due to the twist

is the sum of its lengthwise velocities due to the two spins

;

or the moment of the twist is the sum of the moments of
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the two spins. If then a straight line belong to the com-
plex and meet the axis of one spin, the moments of the

twist and one spin are zero, consequently the moment of

the other spin is zero, or its axis meets the line. Therefore

a straight line of the complex which meets the axis of one

spin, meets also the axis of the other.

If however the axis of one spin belong to the complex,

that of the other spin must meet it, since the moment of

the twist about it is zero ; but in that case it must also

coincide with it, since otherwise the pitches of all screws

on the cylindroid would be zero. We have then the case

noticed above, in which the pitch-conic reduces to two
parallel lines.

From the symmetry of the expression — JcsinO in re-

gard to the two straight lines concerned, Ave perceive that

the lengthwise velocity of a line A due to a unit spin about

a line B is equal to the lengthwise velocity of B dus to a
unit spin about A, Hence we may speak of this quantity

as the moment of the two lines, or of either in regard to

the other. We shall also define the moment of two spins

as the jjroduct of their magnitudes into the moment of their

axes. If one of the axes goes away parallel to itself

to an infinite distance, and at the same time the angular

velocity w about it diminishes indefinitely, so that kco = v,

the spin becomes a translation-velocity v perpendicular to

that axis, making, therefore, an angle ^, =\'n- — 6, with

the other axis ; and the moment becomes vco cos <^, if

CO is the magnitude of the finite spin. In the same way
we may speak of the moment of a twist and a spin,

meaning the magnitude of the spin multiplied by the

moment of the twist about its axis.

Suppose the twist resolved into two spins A, B; then

its moment in regard to the spin C will be the sum of the

moments of the component spins. Let us combine with G
a spin D, making a second twist; then the sum of the

moments of the twist A + B in regard to C and D will be
equal to (A G) + {BG) + {AD) + (

CD), (where {A C) means
the moment of A in regard to C), that is, it will be the

sum of the moments of the twist G+D va. regard to A
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and B. Therefore it is independent of the way in which

the second twist is resolved into two spins.

Consider then two twists a, /3, whose pitches are p, q.

The moment of the first in regard to the rotation of the

second is a/8 {p cos 6 — k sin 6), and in regard to the trans-

lation it is a . /3q cos 6. Thus the whole moment is

afi [(p + q) cos 6 — k sin 6].

The quantity (p + q) cos — ksinO is called the moment
of the two screws, or of either in regard to the other. It

may be thus defined:—Let a unit twist about one screw

be resolved into two spins, and let the magnitude of each
of these be multiplied by the lengthwise velocity of its

axis due to a unit twist about tbe other screw. The
sum of the products is the moment of the two screws.

Hence, by making the two twists coincide, we find that

the moment of a twist in regard to itself is the square

of its magnitude, multiplied by twice its pitch. Since
then the motaent of a spin in regard to itself is zero, the

moment of a twist A + B is twice the moment of the
spins A, B ; and this is therefore the sarne, whatever two
spins the twist is resolved into.

Now the moment of two spins in regard to one another
is six times the volume of the tetrahedron which has
the lines representing the spins

^^

for opposite edges. Let ab, cd be
the representative lines ; since

each may be slid along its axis

without altering the spin,let them
be so placed that the shortest

distance fg bisects them both.

Draw through f, a'b' equal and
parallel to ab, bisected by/; and
through g, c'd' equal and parallel

to cd, bisected by g. Then ad b'c,

ad' be are equal parallelograms, and the volume of the

parallelepiped, of which they are opposite faces, is

^fg .ab.cd sin 6,
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wliich is half the moment of ab in regard to cd. Now this

parallelepiped is made up of the tetrahedra

abed, abdd', abcc', cdaa, cdbb',

of which the last four are equal, and each of them (being

one-third of height x base) is one-sixth of the parallel-

epiped. It follows that abed is one-third of it.

"We learn then that a twist may be resolved in an
infinite number of ways into two spins, but that the tetra-

hedron, whose opposite edges are their representative

lines, is always of the same volume, namely, one-sixth

of the squared magnitude of the twist multiplied by its

pitch.

INSTANTANEOUS MOTION OF A RIGID BODY.

We shall prove presently that when a plane is in mo-
tion, sliding on another plane, the system of velocities at

any instant is that of a spin about a certain point in the

plane, called the instantaneous centre. As the motion goes

on, the instantaneous centre in general changes con-

tinuously, describing a curve in the fixed plane and a
curve in the moving plane. These curves are called cen-

trodes {Kevrpov 6S09, path of the centre), and the motion is

such that the centrode in the moving plane (the moving
centrode) rolls upon the centrode in the fixed plane (the

fixed centrode). Thus every motion of a plane sliding on
a plane may be produced by the rolling of one curve on
another; the point of contact being the instantaneous

centre.

Similar theorems hold good when a body moves about

a fixed point, or, which is the same thing, "when a spheri-

cal surface slides upon an equal sphere. In this case the

velocity-system at any instant is that of a spin about a
certain line through the fixed point, called the instantaneous

axis; or, in describing the sliding of a sphere, we may say

that at any instant it is rotating about a point on the

spherical surface, called the instantaneous centre. As the

motion goes on, the instantaneous axis moves, always
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passing tlirough the fixed point, so as to describe a certain

cone, called the fixed axode. At the same time it traces

out in the moving body another cone, called the moving
axode. We may describe the same thing in other words
by saying that the instantaneous centre on the spherical

surface describes a fixed and a moving centrode on the

fixed and moving spheres respectively. The motion is

such that the moving cone rolls upon the fixed cone, and
therefore the moving spherical curve rolls upon the fixed

curve.

The most general motion of a rigid body is that of a
twist about a certain screw, called the instantaneous screw.

The axis of this screw, in moving about, generates two
surfaces, one fixed in space, and one moving with the body.

These surfaces are called axodes ; being generated by the

motion of a straight line, they belong to the class of ruled

surfaces or scrolls. The motion is such that one axode
rolls and slides on the other, the line of contact being the
axis of the instantaneous screw.

Eeturning to the motion of a plane on a plane, we may
approximately represent it during a certain interval by con-
sidering a series of successive positions at

certain instants during the interval. We
know that the body may be moved from one
of these to the next by turning it round
a certain point. Let a, JB, G,I),E... be
the points round which the body must be
turned in order to take it from the first

position to the second, the second to the

third, etc., and let h, c, d, e ...he the points in the moving
plane which successively come to coincide with B, C, D,E...
Then we can move the body through this series of positions

by rolling the polygon ahcde on the polygon aBCDE, it

being obvious that corresponding sides of them are equal.

By taking the successive positions sufficiently near to one
another, we can make this approximation as close as we
like to the actual motion of the plane ; and the nearer the

successive positions are taken, the more closely do the
polygons approximate to continuous curves which roll

upon one another.
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Precisely similar reasoning may be used in tlie case

of a sliding sphere, and of the general motion of a rigid

body.

There are some difficulties in this proof, which the fol-

lowing exact investigation may clear up. The question is,

what velocity-systems are consistent with rigidity ? We shall

secure that the body does not change in size or shape, if

we make sure that no straight line in the body is altered

in length. Let a and h be two points in the body, then

the motion of 6 relative to a must be at right angles to a6;

for its component along ah is the flux of the length ah,

which has to be zero. We shall find it convenient to de-

note the velocity of the point a by a. This being so, it is

necessary and sufficient for rigidity that h — a should be

either zero, or perpendicular to db, where a, h are any two
points in the moving body. It follows at once that if

two velocity-systems are consistent with rigidity, their re-

sultant is consistent with rigidity.

Now suppose a plane to be sliding on a plane, and
combine with its velocity-system a translation equal and
opposite to the velocity of any point a. Then the new
motion is consistent with rigidity, and the point a is at

rest. Consequently the new motion is a spin about the

point a. The original motion, therefore, is the resultant

of this spin and of a translation equal to the velocity of a
;

it is therefore a spin of the same magnitude to, about a
point situate on a line through a perpendicular to its

direction of motion, at a distance such that a = i(o . oa.

To determine the motion of the instantaneous centre,

we must find the acceleration of any point in the plane.

The instantaneous centre shall be called c in the fixed

plane, and c^^ in the moving plane; and at a certain instant

of time it shall be supposed to be at a point o in the

moving plane. Then at that instant c, c^, o are the same
point; but 6 means the velocity of the instantaneous centre

in the fixed plane, c^ its velocity in the moving plane, and
the velocity of a in the moving plane, which we know to

be zero.
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Now if p be any point in the moving plane, we know
that at every instant p = i(o. cp. To find the acceleration

ofp we must remember that the flux of cp is p—c. There-

fore

p=icl) .cp + ico (p — c) = {{(b — d)^) cp — i(o . 6.

Now let p coincide with o, that is (for the instant) with c.

Then o = — iw . c, or the acceleration of a is at right angles

to the velocity of c, and equal to the product of it by the

angular velocity.

If we suppose the moving plane to be fixed, and the

fixed plane to slide upon it so that the relative motion is

the same, then if p^ is the point of the fixed plane which
at a given instant coincides with p in the moving plane,

the velocity and accleration of p^ on one supposition are

equal and opposite to the velocity and acceleration of^ on
the other supposition ; also w becomes — w. Hence we
shall have Oj = + ico .6^, but o^ = — 6. Therefore c^ = c, or

the velocity of the instantaneous centre in the moving plane

is the same in magnitude and direction as its velocity in

the fixed plane.

Because these velocities are the same in direction, the
two centrodes touch one an-

other; and because they are

the same in magnitude, the
moving centrode rolls on the

fixed one without sliding. For
let s, 5j be the arcs ac, he

measured from points a, b which have been in contact

;

then s=5j, and therefore (since they vanish together) s=s^.

The angular velocity w is equal to * multiplied by the

difference of the curvatures of the two centrodes. For

suppose them to roll simultaneously on the tangent ct; then

their angular velocities <j> and -yjr will be respectively equal

to their curvatures multiplied by s, and the relative angular

velocity will be the difference of these. When the curva-

tures are in opposite directions one of them must be con-
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sidered negative. The same result may be obtained by
calculating the flux of the acceleration of o.

Thus if r, r^ are radii of curvature of the fixed and
rolling centrodes, we have

and s = ft)

r — r.

CURVATURE OF ROULETTE,

We may derive some important consequences from the

expression just obtained for the the acceleration of a

point in the moving plane, namely

p = (i(b — (o^)cp— ion . c.

This consists of three parts ; to^ . pc is the acceleration

towards c due to rotation about it as a fixed point ; id) . cp

is in the direction np perpendicular to cp, due to the

change in the angular velocity ; and —ico .6 is in the

direction en, due to the change in position of c as the

centrode rolls. Hence the normal acceleration of p,
that is, the component along pc, is in magnitude
6)^ .pc — w.c cosO. It vanishes for those points p for

which <».^c = c cos ^, or for which en = 6 : (o. These
points lie on a circle having en for diameter ; the curvature
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of this circle is 1 : ^cn or 2(o : c, that is, it is twice the

difference between the curvatures of the centrodes. All the
points of this circle, therefore, are at the given instant

passing through points of inflexion on their paths.

The path of any point p is called a roulette, as being
traced by rolling motion. We can now determine the
curvature of a roulette at any point. For since the

normal acceleration is the squared velocity multiplied by
the curvature, we have

n ^t n. oy' . pc — a . ccos9
curvature oi path oi p= —^—^ 2—

—

'

_ 1 cos^ rr^

po pc^ ' r — r^*

where r, r^ are the radii of curvature of the fixed and
rolling centrodes.

The tangential acceleration o(p is co .cp — (oc sinO. If

therefore we make ct = w6 : w, the locus of points whose
tangential acceleration is zero is a circle on ct as diameter.

The point at c belongs to both circles ; it is a cusp on its

path, being a point where there is no normal acceleration,

but also no velocity. It has, however, as we know, a
tangential acceleration —iwc. The other interseciion of

the two circles has no acceleration at all.

INSTANTANEOUS AXIS.

In the case of a body moving with one point fixed, we
may combine with its velocity-system a spin about any
axis through the point, such that the velocity of a certain

point a due to the spin is equal and opposite to its actual

velocity in the motion of the body. The resultant velo-

city-system is consistent with rigidity, and the point a is

at rest; it is therefore a spin about the axis oa. Conse-
([uently the actual motion of the body is a spin about some
axis in the plane of those two.
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Let oc, = (0, be the instantaneous spin in magnitude and
direction, op, = p, the position vector

of any point p. Then we know that

the velocity of p is the moment of

oc about p, that is, twice the area

of the triangle ocp. This quantity,

which is in magnitude oc . op sin cop,

and in direction perpendicular to oc

and op, is what we have called the

vector product of oc and op, and de-

noted by Vcop. We have therefore J"

p = Vcop.

To find the acceleration of p, therefore, is to find the
flux of the triangle ocp, due to the motion of p and c.

Now suppose that c moves to Cj in a certain interval

;

then oc^p = ocp + coc^ + c^pc, all the areas being of course

regarded as vectors. But if we draw pd equal and parallel

to cc^, we shall have coCy + c^pc =pod, for the three tri-

angles stand on the same base cc^^ or pd, and the height op
is the sum of oc and cp. It follows that the liux of ocp,

due to the motion of c, is equal to the moment about o of

the velocity of c supposed to be transferred to p. That is,

the flux of Vcop, due to the change of co, is Vcop. In a
similar way it may be shewn that the flux due to change
of p is Vcop. Hence ^ altogether, since p= Vcop, we have

p = Vcop + Vcop = Vcop + V.co Vcop.

The expression V. coVcop means the vector product of the

two vectors, o) and Vcop. Thus it appears that the acce-

leration of p consists of two parts; V.co Vcop along the

perpendicular from p to the axis oc, due to the rotation co
;

and Vcop, perpendicular to op and to the velocity of c, due
to the change of <y.

Let a be the point of the moving body at which c is

instantaneously situated, then d= Vcbco, or the acceleration

of a is equal to the moment about o of the velocity of c.

1 The flux of a vector product has been already found by a different

method on p. 97.
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If we interchange the fixed and moving axodes, keeping
the relative motion the same, we alter the signs of a and
to ; therefore &> is unaltered, or the velocity of c is the

same on either supposition. Hence it follows, as in the

case of the plane, that the moving axode rolls in contact

with the fixed one.

In the general motion of a rigid body, combine with

its velocity-system a translation equal and opposite to the

velocity of any point a. Then the new velocity-system is

a spin round some axis through a. Hence the actual

motion is the resultant of a spin and a translation, that is

to say, a twist.

DEGREES OF FREEDOM.

The special problems presented by the motion of a
plane on a plane are of two kinds. In the first kind, the
motion being determined in any way, it is required to find

the centrodes. In the second kind, the centrodes being
given, it is required to find the path of any point or the
envelop of any line in the moving body.

The motion of a plane is determined when each of

two curves in the moving plane is

made always to touch one of two
curves in the fixed plane. Thus
the figure bounded by the two
curves a, b can be made to move
about so that a shall always touch
the curve A, and b shall always

touch the curve B ; and it is clear

that its motion is then deter-

mined, except as to the time in

which it is performed. In particular cases one of the

curves A, a may shrink into a point ; the condition of

tangency then resolves itself into the condition that a
point in the moving plane shall lie on a fixed curve, or a
curve in the moving plane shall pass through a fixed

point.
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Since it requires three conditions to fix a plane figure

in its plane, it is said to have three degrees of freedom.

If it is subjected to one condition, e. g. that a certain

curve must always touch a fixed curve, it has two degrees

of freedom left. When it is subject to two conditions, it

has one degree of freedom left, and can only move in a

certain definite manner.

When one curve has to touch another, the instan-

taneous centre is situated on the common normal, since

the point of contact can only move along the tangent.

And as a particular case, when a point has to lie on a
given curve, or a curve has to pass through a given point,

the instantaneous centre lies on the normal to the curve

at that point. In general, if we know the direction of

motion of any point, the instantaneous centre is in the

line through the point perpendicular to that direction.

• INVOLUTE AND EVOLUTE.

For example, if two lines at right angles pt, pn are

made to move as a rigid body, so that pt is tangent

and pn normal to a given curve, the motion of p will

always be in the direction pt, and
therefore the instantaneous centre

will always be in pn. Hence pn
is the moving centrode ; and the

fixed centrode, which pn rolls upon, is

called the evolute of the given curve.

If a is a point where the evolute

meets the curve, pn = arc an in length.

The curvature at ^ is 1 : pn, by the

formula already obtained; thus n is

the centre of curvature, and the evo-

lute may be described as the locus of

centres of curvature of the given curve. Moreover, since

pn = arc an, the curve ap may be described by unwinding
a string from the curve an. On this account ap is called

an involute of the curve an. It is clear that every other
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centre remains in the line ab. It now has only one degree

of freedom, and the line ah is the fixed centrode. The
rolling centrode is a curve in the moving plane which shall

be called the curve A. This curve is clearly the envelop

of the line of centres in the moving plane.

Let us now fix the moving plane, and move the fixed

plane, subject to the same condition of relative motion.

Then as before, for each position there will be a line of

centres, and by restricting the instantaneous centre to

this, we shall make the motion such that a curve B in the

plane formerly fixed will roll upon the line of centres.

This curve is the envelop of the line of centres in the fixed

plane. - -

.:' Hence the relative motion of the two planes is such
that the curves A and B roll on the same straight line.

Or when a plane slides on a fixed plane, having two degrees

of freedom, its motion is such that a curve A in the moving
plane rolls on a straight line which rolls on a curve B in

the fixed plane.

Let X be any point on the line of centres, and draw the

involutes of A and B which pass through x. Then they

-tx-

will cut the line at right angles and therefore touch one

another at x. But if we make A roll on the line, having

its involute fixed to it, this involute will always pass

through X at right angles to the line ; and similarly for B.

Hence the relative motion of the two planes is such that

these two involutes always touch. Thus the motion is such

that a curve in the moving plane always touches a curve in

the fixed plane ; hut we may substitute for these two curves

any two curves parallel to tfiem at equal distances on the

same side.

c. 10



CHAPTER III. SPECIAL PROBLEMS.

THREE-BAR MOTION.

If three bars, ah, he, cd are jointed together at h, c,

while the remaioing ends are fixed at points a, d about

which the bars are free to turn, a plane rigidly attached to

be is said to have three-har motion. Properly speaking,

w^e ought to consider the jointed quadrilateral ahcd, and
study the relative motion of two of its opposite sides.

We may also specify the motion by saying that the

points h, c in the moving plane have to lie respectively on
two circles in the fixed plane, viz. the circles whose centres

are a, d, and radii ab, dc. The instantaneous centre o is

at the intersection of ab and dc, since the motions of b and
c are respectively perpendicular to those lines.

The centrodes of the three-bar motion have only been
determined in particular cases. The most important of

these is that of the crossed rhomboid, so called because its
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opposite sides are equal. The figure is symmetrical ; and
if the intersection of ab, cd is at o, we have

ao + do=:ao + ob = ab

;

thus the point o describes relatively to ad an ellipse of

which a, d are foci, and ab the major axis. Similarly we
have bo + co = ba, or the locus of o in the moving plane
is an equal and similar ellipse. These, therefore, are the

centrodes. The relative motion is most clearly understood

by supposing both ellipses to roll on the common tangent

ot, so as to preserve the symmetrical aspect.

In this way we may see that the path of any point in

the moving plane is similar to a pedal of the fixed ellipse.

For let p, q be corresponding points in the two ellipses,

then the line pq is always bisected at right angles by the
tangent ot, and therefore the locus of q, when p is fixed, is

similar to the locus of t, but of double the size. It has
been proved that the reciprocal of a conic section is

always a conic section ; from which it follows that the pedal
of a conic is also the inverse of a conic (generally a
different one ; but the same in the case of an equilateral

hyperbola in regard to its centre). Hence we see that

ever^ point in the moving plane describes the inverse of a
conic. The inverse of a hyperbola passes twice through
the centre of inversion, since the hyperbola goes away to

infinity in two directions ; but the inverse of an ellipse

does not. Hence if q is outside the ellipse, so that it can
coincide with p in some position of the two curves, it

describes the inverse of a hyperbola; but if q is inside

10—2
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the ellipse, so that it can never reach p, it describes ther

inverse of an ellipse. Intermediate between these is the

case in which q is on the ellipse, when the curve which it

describes has a cusp and is the inverse of a parabola, which
only goes to infinity in one direction.

We have here considered the relative motion of the
two short sides of a crossed rhomboid. That of the two
long sides is equivalent to the rolling of two equal and
similar hyperbolas. !For in this case we have

ao — do = ao — ho = ah,

so that the locus of o is a hyperbola having a, d for foci

and ah for transverse axis. Remarks may be made about
the path of a point in the moving plane entirely similar

to those made on the other case.

In the general case of three-bar motion, the lengths of

the three bars being arbitrary, an important theorem has

been obtained by Mr S. Roberts. Any path described by

a point in a plane moving with three-bar motion may also

he described in two other ways by three-bar motion. Suppose

(second figure) that ah, hk, kb are the three bars, a the

moving point which is rigidly connected with hk by the

triangle ohk. Then the theorem is that the path of o may
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also be described by means of the bars ag, gf,fc, or the
bars hd, de, ec. The triangles hko, (/of, ode are similar to

one another, and the figures ahog, bdok, cfoe are parallelo-

grams.

The theorem has been put by Prof. Cayley into the

following elegant form. Take any triangle abc (first figure)

and through any point o within it draw lines kf, eh, gd
parallel to the sides. Let the triangles hko, gof, ode be

supposed rigid and jointed together at o, and let the other

lines in the figure represent bars forming three jointed

parallelograms. Then however the system is moved about

inits plane (e.g. into the configuration of the second figure)

the triangle abc will he always of the same shape. , Now
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the system is one -whicli in shape (independently of its

position) has two degrees of freedom ; for if we fix one of

the three triangles, the other two may be turned round
independently. If therefore we impose a single condition,

that the area ahc shall be constant, the system will still

have one degree of freedom. But this is equivalent to

fixing the size of abc as well as its shape, so that we may
fix the points a,b,c; and still o vfiii be able to move.
In so moving it will describe a path which is due at the

same time to three different three-bar motions.

All that remains to be proved, therefore, is that the
shape of abc is invariable. This can be made clear by
very simple considerations. Let q be the operation (com-
plex number) which converts hk into ho, so that ho = q . hk.

Then the same operation will convert go into gf and od
into oe, since the three triangles are similar. Consequently

ac = ag +gf+fc = ho + gf+ oe = q .hk + q .go

+ q.od = q{hk + ah + kb) =q.ab,

that is, ac is got from db by the same operation which
converts hk into ho ; therefore the triangle ahc is similar

to hko. Or in words, the components ag, gf,fc of ac are

got from the components hk, ah, kb of ab by altering all

their lengths in the same constant ratio and turning them
all through the same constant angle. Therefore the whole
step ac is got from ab by altering its length in a constant

ratio and turning it through a constant angle.

It is to be observed that the configuration in the first

figure forms an apparent exception to the theorem. The
area abc is then a maximum, and the path of o has shrunk
up into a point, so that it is really not able to move.

We may use Mr Roberts' theorem to transform motion
due to the crossed rhomboid
into that due to a figure called

a kite by Prof Sylvester. It

also is a quadrilateral having
its sides equal two and two,

but the equal sides are ad-

jacent.
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Now if the point o he taken in the first figure so that
gd is bisected at o, the triangles go/, ode will be equal in

all respects, and hJc will equal ha. Now put the figure

into such a configuration that dbc is equal to hko: then
ahkb is a crossed rhomboid, and both the figures bdec, agfo
are kites. For hc = ko — bd, and ac = ho= ag,

while de = ec and gf=fc by construction.

It follows that in the three-bar motion determined by
a kite, the path of every point in the moving plane is the
inverse of a conic ; since it may also be described by
means of a crossed rhomboid.

CIRCULAR ROULETTES.

Considerable interest attaches to the case of plane mo-
tion in which both centrodes are circles, or when one is a
circle and the other a straight line ; the latter being a
speciality of the former, obtained by making the radius

of one circle infinite. The path traced by a point in the

circumference of the rolling circle is called a cycloidal

curve, that traced by any other point in the moving plane

a trochoidal curve ; the names cycloid and trochoid sim-

pliciter being applied to paths traced in the rolling of a
circle on a straight line.
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Two circles may touch each other so that each Is out-

side the other, or so that one includes the other. In the

former case, if one circle rolls on the other, the curves

traced are called epicycloids and epitrochoids. In the

latter case, if the inner circle roll on the outer, the curves

are hypocycloids and hypotrochoids; but if the outer circle

roll on the inner, the curves are epicycloids and peritro-

choids. We do not want the name pericycloids, because,

as will be seen, every pericycloid is also an epicycloid ; but
there are three distinct kinds of trochoidal curves.

DOUBLE GENERATION OF CYCLOIDAL CURVES.

Every cycloidal curve (except the cycloid par excellence)

can be generated in two different

ways. In the case of hypocy-

cloids, let a and b be centres of

two circles the sum of whose radii

is equal to the radius of the fixed

circle. Then if we complete the

parallelogram oapb, p will be a

point of intersection of these cir-

cles, for ap = ob = od —bd= rad'ins

of circle a, and similarly bp equal

radius of circle b. Hence the

angles cap, pbd, cod are all equal, and therefore the arcs

ap,pd, ad are the same portion of the circumferences of

their several circles. But the radius of the large circle is

the sum of the radii of the two

smaller ones ; therefore its cir-

cumference is the sum of their

circumferences, and consequently

the arc cd is the sum of the arcs

cp, pd. Make cq = cp, so that

qd = pd; then by the rolling of

the circle a the point p would

come to q, and by the rolling of

the circle b the point p would

come to q; hence the mtersec- "

tion of the two circles is a fixed point on each of them, and

the path ofp may be described by the rolling of either.
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In the case of epicycloids, the difference of radii of

the rolling circles is equal to the radius of the fixed circle

;

the arc c-p is equal to cd + dp, and p would be brought to

q by the rolling of either a or 6.

CASE OF EADII AS 1 : 2.

A very Important case is that of internal rolling, the

radius of one circle being half that of the other. Draw
the straight line opq^ to meet both circles. Let cop = 6,

then cap = 20 ; and if a be the radius of the smaller circle,

2a of the larger, arc cp = 2a0, and arc cq = 2ad ; therefore

cp = cq, orp will come to q in the rolling. Hence every

point in the circumference of the rolling circle describes a
diameter of the fixed circle. The opposite point p de-

scribes the diameter perpendicular to the former.

If we suppose the small circle to roll from c to the

right, oa will turn counterclockwise into the position oa,
while ac will turn clockwise into the position a'c. Hence
the motion (supposing the rolling to take place uniformly)

is a composition of two circular motions of the same period
in opposite directions. Consequently the motion of any
point can be resolved into simple harmonic motions all of

the same period. It follows that the motion of every point
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of the moving plane is harmonic motion in an ellipse,

which in certain cases as we have seen reduces itself to

simple harmonic motion on a diameter of the fixed circle.

Hence if a line of constant length ah be moved with

its extremities on two fixed lines

oX, oY, the path of every point

rigidly connected with ab will be
an ellipse with centre o, unless the

point is on the circumference of

the circle circumscribing oab, in

which case the path is a straight

line through o. An apparatus for

describing an ellipse by means of

a pencil attached at a point ;» of a bar so moving, is called

the elliptic compasses. The semi-diameters of the ellipse

along oX and o Y are pa, ph respectively. When oX, oY
are at right angles, these are the serai-axes of the ellipse.

If the small circle be fixed, and the larger roll round
it, the motion is such that every diameter of the rolling

circle passes through a fixed point on the small one. Now
every line in the moving plane is parallel to some diameter

of the large circle, and must therefore remain at a fixed

distance from the point through which the diameter always
passes ; consequently it always touches a circle whose
centre is at that point. Hence every straight line in the

moving plane envelops a circle. Conversely, if a plane

move so that two straight lines in it always touch two
fixed circles, then every line in the plane will envelop a
circle. For two lines parallel to them through the centres

of the circles are fixed relatively to the moving plane

;

thus a line of constant length in the fixed plane always

has its extremities on two lines of the moving plane, and
the motion is the one here considered.

The curve traced by a point in the circumference of

the large circle is a cardioid, which we have already met
with as the inverse of a parabola in regard to the focus,

or, which is the same thing, the pedal of a circle in regard

to a point on the circumference. If the point q describe

a cardioid, the line qt, tangent to the large circle, always

touches a fixed circle whose centre is at p\ and which
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therefore touches the fixed small circle at p. Hence q is

the foot of the perpendicular on the tangent to this circle

from the point p on its circumference. The cardioid may
also be described by the external rolling of a circle on a

fixed circle of equal size.

ENVELOP OF CARRIED ROULETTE,

When a circle rolls on afixed circle, every diameter ofthe

rolling circle envelops a cycloidal curve. Suppose a circle

of half the size to roll together with the circle o, so as to

have always the same point of contact ; then the relative

motion of these two circles will be that which we have

just considered, and a point p, fixed on the small circle.

will be always on the diameter oq. The tangent to the

cycloidal path described by p, in consequence of the rolling

of the circle a on the fixed circle, is opq, since c is the

instantaneous centre ; hence this line always touches the

cycloidal curve.

This theorem is a particular case of the following. Let

a curve B roll on a curve A, carrying with it the roulette

'pq made by rolling C on ^; then the envelop of this
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roulette is a curve which may be described by rolling (7

on A. Suppose B and G to roll simultaneously on A, so

as always to have the same point of contact; then the

motion of G relative to B is that which describes the

roulette qp. Now cp is perpendicular to the tangent both
of this roulette and of that which p describes by the rolling

of C on jd. Hence the two roulettes always touch one
another, as was to be proved. Observe that the point p
is not necessarily on the curve G.

Returning to the case of the circles, we observe that

the extremities q, r of the moving diameter describe

similar and equal cycloidal curves, such that a cusp of one
and a vertex of the other are on the same diameter of the

fixed circle. Hence if a straight line of constant length

move with its ends on two such cycloidal curves, starting

from a position in which one end is at a cusp and the

other at a corresponding vertex, it will envelop a cycloidal

curve.

The following are cases of this theorem

:

1. The chord of a cardioid throvgh the cusp is of
constant length. (A point is a special case of a cycloidal

curve.)

2. A line of constant length with its ends moving in

two fixed lines at right angles envelops afour-cusped hypo-

cycloid.

3. The portion of the tangent to a three-cicsped hypo-
cycloid intercepted by the curve is of constant length.

The curvature of cycloidal curves may be calculated by
means of the general theorem already given for the curva-

ture of roulettes, or directly as follows. Let o be the centre

of the fixed circle, take ce : dc — do : co, draw a circle

through e with centre o, and a circle on ce as diameter.

Produce j3C to meet this in q. If this circle roll on the

circle through e, so that q is brought to h, we shall have

eq = eh, and since eq : pd = ec : cd= oe : oc, pd is equal to

the corresponding arc of the circle kc. Hence the two small

circles may roll together on the two large ones, so that ce

always passes through o, and pcq is a straight line. Then
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pq is normal to the path of p and tangent to that of q, or

the latter path is the evolute of the former.

T\ \ \

V \\ /

h

It follows that the length of the arc Jcq is equal to pq,
or s = de cos i/r. It is clear that i/r is in a fixed ratio to

the angle
<f>

which pq makes with the normal at k, and
consequently s = a cos m^, if a = de and m is this fixed

ratio.



BOOK III. STRAINS*

CHAPTER I. STRAIN-STEPS.

gTRAIN IN STRAIGHT LINE.

We have hitherto studied the motion of rigid bodies,

which do not change in size or shape. We have now to

take account of those strains, or changes in size and shape,

which we have hitherto neglected.

The simplest kind of strain is the change of length of

an elastic string when it is stretched or allowed to con-

tract. When every portion of the string has its length

altered in the same ratio, the

strain is called uniform or homo- oi 1 \h

geneous. Thus if ap6 is changed '

into a'p'b' by a uniform strain, a'l 1-^ iJ'

ap : a'p = ab : a'b'. The ratio '

ap : ap, or the quantity by which the original length

must be multiplied to get the new length, is called the

ratio of the strain. The ratio of the change of length to

the original length, or ap' — ap : ap, is called the elonga-

tion ; it is reckoned negative when the length is diminished.

A negative elongation is also called a compression.

Let e be the elongation, s the unstretched length ap,

a the stretched length o!p', then a- — 8 = es,ox a- = s[\+t).
Thus 1 + e is the ratio of the strain.

In general, a solid body undergoes a strain of simple

elongation e, when all lines parallel to a certain direction

are altered in the same ratio 1 : 1 + e, and no lines per-

pendicular to them are altered in magnitude or direction.
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The strain is then entirely described if we describe the

strain of one of the parallel lines.

HOMOGENEOUS STRAIN IN PLANE.

The kind of strain next in simplicity is that of a iSat

tnembrane or sheet. Suppose this to be in the shape of a

square ; we may give it a uniform elongation e parallel to

one side, and then another uniform elongation y* parallel to

the other side. It is now converted into a rectangle, whose
sides are proportional to 1 + e, 1

-\-f.
By each of these

operations two equal and parallel lines, drawn on the mem-
brane, will be left equal and parallel ; though, if not parallel

to a side of the square, they will be altered in direction.

We may prove, conversely, that every strain which
leaves straight lines straight, and parallel lines parallel, is

a strain of this kind combined with a change of position

of the membrane in its plane. Such a strain is called

uniform or homogeneous.

Since a parallelogram remains a parallelogram, equal
parallel lines remain equal. Then it is easy to shew,
by the method of equi-multiples, that the ratio of any
two parallel lines is unal-

tered by the strain. Next, if

we draw a circle on the un-
strained membrane, this circle

will be altered by the strain

into an ellipse. For in the

unstrained figure

A'M.MA : CA'^MP' : CB\

and since these ratios of parallel lines are unaltered, it

follows that in the strained figure also

a'm . ma : ca? = mp^ : ct*.

Hence the strained figure is an ellipse, whose conjugate

diameters are the strained positions of perpendicular

diameters of the circle.

It follows that there are two directions at right angles

to one another, which remain perpendicular after the
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strain ; namely those which become the axes of the ellipse

into which a circle is converted. If these lines remain
parallel to their original directions, the strain is produced
by two simple elongations along them respectively; in

that case it is called a pure strain. If they are not parallel

to their original directions, the strain is compounded of a
pure strain and a rotation.

Two lines drawn anywhere in the strained membrane
parallel to the axes of the ellipse into which a circle is

converted, or in the unstrained membrane parallel to the

unstrained position of those axes, are called principal

axes of the strain. The elongations along them are called

principal elongations; the ratios in which they are altered

are called principal ratios.

EEPRESENTATION OF PURE STRAIN BY ELLIPSE.

When the strain is pure, the new position of any step

may be conveniently represented by means of a certain

ellipse. Let the principal ratios be p, q, so that every line

parallel to oX is altered in the ratio 1 : p, and every line

parallel to oY in the ratio 1 : q. Take two lengths oa, oh,

along oX, F respectively, such that oa^ : ob^= q : p, and
let w be the positive geometric mean of p, q, so that

tr^ — pq. Then we shall have, so far as length is con-

cerned, p . oa =m . ob, and q . oh = m. .oa. Hence, taking

account of direction, oa becomes im , oh', and oh becomes
im . oa, in consequence of the strain.

Now construct an ellipse having oa, oh for Fomi-axes
;

then if jj be any point op it and gq the diameter conjugate
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to op, the strain will turn op into im . og'. For since it

turns oa into im . oh', it will turn on into im . rq, because
on : oa = rq' : ob' (p. 129). And since it turns oh into im . oa,

it will turn np into im . or, because np : oh = or : oa.

Therefore it will turn op, which is on + np, into im {rq + or),

that is, into im . oq.

Hence we see that the strained position of any vector

is perpendicular to the conjugate diameter of a certain

ellipse, having that vector as diameter, and is proportional

to the conjugate diameter in length. For the ellipse used
in this representation may be of any size, since all that is

necessary for it is that its axes should be parallel to the
principal axes of the strain, and inversely proportional to

the square roots of the principal ratios.

EEPRESENTATION OF THE DISPLACEMENT.

The displacement of any point is the step from its old

position to its new one. Thus if a vector op is turned by
the strain into op , the displacement oip is pp'.

When the two principal elongations e, f are of the

same sign, the displacement may be represented by an
ellipse, in the same way as we have represented the new
position of any vector. The only difference is that we
are now to draw an ellipse whose axes are inversely pro-

portional to the square roots of the elongations, so that

oa^ : oW =/ : e, and to make m? = ef, giving to m the same
sign as e or yi Then the displacement of a will be im . oh',

and the displacement of h will be im . oa. Hence it follows

(as before) that the displacement of p will be im . oq. In
this case therefore the displacement of every point on the
ellipse is perpendicular and proportional to that diameter
which is parallel to the tangent at the point.

But when e and f are of different signs, it is necessary

to use a hyperbola to represent the displacement. Let
m* = — c/^ and od^ : oh^ = — f : e ; and let m be taken of

the same sign as/ Then the displacement of a will be
im . oh, and the displacement of h will be im . oa. If then
a hyperbola be described with oa and ob as axes, and

c. 11
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op, oq be a pair of conjugate semi-diameters, the displace-

ment of j3 will be 1711 . oq and that of q will be im . op. The

proof is the same as for the ellipse, depending on the
property that np : ob = or : oa, and rq : oh = on : oa.

The ellipse or hyperbola which is thus used to represent

the displacement is called the displacement-conic of the

strain.

LINEAR FUNCTION OF A VECTOR.

One vector is said to be a function of another, when
its components are functions of the components of the

other ; so that, for every value (including magnitude and
direction) of one of them, there is a value or values of the

other. Ihvi^ pi + qj -{ rk is a function of xi-^yj-\-zk if

jy, q, r are functions of x, y, z. We may express this rela-

tion between them thus : pi + qj + rk =
(f)

{xi + yj + zh).

A function of a vector is said to be linear when that

function of the sum of two vectors is the sum of the func-

tions of the vectors. Thus the function <p is linear when

At present we shall consider only linear functions of

vectors which are all in one plane. It is clear that when
a plane figure receives a homogeneous strain, the strained

position of any vector is a linear function of the vector.

For the triangle made of two vectors a, /3 and their sum
a + /3 becomes after the strain a triangle made of the

vectors ^a, ^yS, (f){a + /3)

;

and consequently (« + yS) = ^a + ^/3.
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If the strain is not homogeneous, the strained position of

any finite line pq is not a function merely of the vector pq,
that is, of the length and direction of the line, but also of

its position.

The displacement of any point is also a linear function

of its position-vector in regard to an origin supposed to

remain fixed during the strain. For let a, /3 be two sides

of a parallelogram, one corner of which is the origin and
the opposite corner of which is consequently the point

whose position-vector is a + /3 ; then since this parallelo-

gram remains a parallelogram during the strain, the dis-

placement of the corner a -I-/3 is the resultant of the displace-

ments of the corners a, yS. Hence if ^/ra is the displacement

of the end of a,

1^ (a + /S) = -fa + -^P.

If j>7. is the strained position of a, the displacement of

its end is ^a — a. Hence the strain-function (f> and the

displacement-function ^lr are connected by the equation,

<j>a. = ^fra + a, or 0a= (i|r + l)a,

which may be written = i^ + 1.

K 7i is a number or scalar quantity,
(f)

{na) =rt^2 when
the function ^ is linear ; for since functions of equal
lengths measured in the same direction are equal, and
functions of multiples of such lengths are multiples of the

functions of the lengths, it follows that functions of un-
equal lengths are proportional to those lengths. Hence
it follows that

(f)
{xi + yj) = xj>i + y<^j,

and therefore we know the function of every vector in the
plane when we know the functions of i and j. Let then
<^i= ai + hj,

<f)j
= h'i + bj ; then the function

(f>
is com-

pletely known when the four quantities a, h, h\ h are

known. These equations may be abbreviated into the form

(l>i, 4>j = (a, h) {i, j) or </> = (a, h)

\h',b\ \h'b\
•

The set of four quantities a, h, h', b, written in a square

shape as in the last formula, is called a matrix ; thus we

11—2
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may say that the function ^ is determined by its matrix.

The matrix must be carefully distinguished from its deter-

minant, which is the single quantity ab — hh', calculated

from the four constituents a, h, h' h of the matrix.

PEOPERTIES OF A PURE FUNCTION.

The strain-function and the displacement-function of

a pure strain are both called pure functions. We proceed

to investigate what must be the relation between the

quantities a, h, h', b in order that the function may be
pure.

If(f> is the strain-function ofa pure strain, Sp^a = Sa^p,
where p, a- are any two vectors. Let op and or be semi-

diameters parallel to p, cr, of

the ellipse whicb represent8

the strain; then if oq and
OS are the conjugate semi-

diameters, ^ [op) = im . oq

and ^ {or) = im . os.

Thus the cosine of the angle

which op makes with (f){or)

is the sine of the angle it makes with os. Therefore the

scalar product of op and <j>{or) is twice the triangle ops,

and the scalar product of or and ^(pp) is twice the tri-

angle orq. But that these triangles are equal appears at

once from intuition of the corresponding figure in the

circle of which the ellipse is orthogonal projection ; where
the angles POQ, EOS will be right angles. Therefore

S.op. ^{oq) = S .oq.^{op); let then p=x.op, a^y.oq,
and Sp(f)(T will be

scy 8 . op .(}) (oq), =xy 8 .oq.(fi (op) = 8a^p.

It follows immediately that the same property belongs

to the displacement-function. For let cf)p = p + -y^p, so

that •x/r is the displacement-function of the strain ^. Then
we have

8p (a- + y^a) = Sp<^cT = 8a<^p = 8<r(p-\^ yp-p)

and therefore, since 8pa- = 8a-p,

8p-^cr = 8cryfrp.
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Now although the strained position of a vector, in any-

actual strain, is represented by
an ellipse in the manner just

made use of; the displacement

may be represented by a hyper-

bola, and the equation

will involve in that case an
equality of triangles like that

which has been just proved for

the ellipse. The theorem is

however obvious; since the parallel lines jo^', rs are bisected

by the asymptote, it goes through the intersection m of

ps, gr; therefore the triangles omp, omr are respectively

equal to oqm, osm, and therefore by addition ojas = orq.

Suppose, as before, that

^i = ai + hj, = op, ^j = h'i -f 5/, = oq^.

Then a = om, h = mp, h' = 071^ b = nq.

The magnitude oi Sicpj,the scalar

product of 01 and oq, is the pro-

duct of the length of oi by the

length of the component of oq

along it ; that is, it is oi . on or

Ji, since the length of oi is unity.

(For reasons to be subsequently

explained, the scalar product of

two vectors is taken to be the

negative product of either by the component of the other

along it; this i& a convention, and does not affect the

present argument.) Hence we have Si(f)j = — h'; similarly

Sj(f>i => — h. If the function
<f)

is pure, Si(f}j = Sj<j)i', thus

for the function <j) to be pure, it is necessary that h = h'.

To shew conversely that when h — h' the function is

pure, we shall actually find the principal axes and elonga-

tions of the strain of which it is the displacement-function.

Let e,fhe the principal elongations, the angle between
oX and the axis of elongation e. A step of unit length

making the angle with oX is i cos 0+j sin 0, and a unit
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step at right angles to this is isinO—j cos6. One of

these receives the elongation e and the other the elongation

f, each in its own direction ; therefore

{i cos 6 +j sin 6) = e (i cos 6 +j sin ff),

^ {i sin 6 —j cos 0) =f{i sin 6 —j cos 6).

Multiply the first equation by cos 6, the second by sin 6,

and add ; thus we get

^i= (e cos* 6 4-/sin* 6) {+ (e —/) sin Ocos 6 .j= ai + hj.

Similarly, by multiplying the first equation by sin 6, the

second by cos 6, and subtracting, we get

^J= (e —f) sin 6 COB 6 A + {e sin^ Q +fco&^ ^)-j'= ^^ + ^j-

It is now necessary to find quantities, e, /, 6, which satisfy

the equations

e cos" 6 +y sin'^ 6 = a,

esiri'e+f 003^0 = b,

{e -/) sin cos 0, = i{e -/) sin 20 = h.

Adding the first two, we have

e+f=a + b;

subtracting the second from the first,

(e —/) cos 2^ = a — J

;

combining this with the third,

(e-fy= 4.K'+ia-hy.

Consequently

tan = 7

,

a — o

2f=a + b-^{W+{a-by}.

Compare with this the solution of an analogous pro-

blem on p. 131, making in that, 6 = ^'n; and k^=k^.
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SHEAR.

When the plane is as much lengthened along one

principal axis of the strain as it is shortened along the

other, so that (1 + e) (1 +/) = 1, or e +f+ ef= 0, the strain

is called a shear. In this case it is clear that the area of

every figure in the plane remains unaltered.

Let oa be changed into oA, and take ob = oA; then ob

will be changed into oB, which is equal to oa. Hence
the rhomb abab' will become the ihomh ABA'B', and ab,

which becomes AB, will be unaltered in length. If we
combine this pure strain with a rotation, so as to bring ab

Bh

to coincide with AB, then a'b' may be brought to A'B'

by a sliding motion along its line. Thus all lines parallel

to ab will be slid along themselves through lengths pro-

portional to their distances from ab. The amount of

sliding per unit distance is called the amount of the shear.

Since we have also a'b = A'B, the shear might also b©
produced by the sliding of lines parallel to a'b ; but then
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it would be combined with a different rotation. Thus
there are two sets of parallel lines which are unaltered in

length, and whose relative motion is a sliding along them-
selves.

The ratio oA : oa is called the ratio of the shear. If

oh = a . oa, the sliding of a'b relative to b'a is 2ab . cos aha'

and the distance between a'b and b'a is ab sin aba'. Hence
the amount of the shear is 2 cot aba' = 2 cot 2d, ii 6 = abo,

so that cot 9 = a. Now
. cos' ^- sin' ^ .Q,a 1

2 cot zd =—.—^— ^- = cot ^ — tan 6 = a .

sin 6/ cos a

Thus, if a be the ratio of a shear, its amount s is given by
s = a — a~\

We have seen that e and/ satisfy the equation

e+/+e/=0,

in the case of a shear. When e and / are very small

fractions, ef is small compared with either of them, and
we have approximately e + /=0. The ratio — e :/ differs

from unity, in fact, by the small fraction e. Thus the

displacement-conic is approximately a rectangular hyper-

bola.

Now the ratio of the shear is 1 4- e, and

(! + .)(! +/) = !.

Hence the amount is

l + 6-(l+/)=6-/;
this is accurate, whether the shear be large or small. But
if the shear is very small, / is approximately equal to - e,

and thus the amount is approximately = 2e.

COMPOSITION OP STRAINS.

When the displacement of every point, due to a certain

strain, is the resultant of its displacements due to two or

more other strains, the first strain is said to be the result-

ant of these latter, which are called its components. If

the displacement of the end of p in two strains respec-
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tively be cf)p and ^frp, the displacement in their resultant

is (^ + T/r)p.

This must be carefully distinguished from the result

of making a body undergo the two strains successively.

Thus if p be changed into (f)^p by the first strain, and
into -yjr^p by the second, the effect of applying the second

strain after the first will be to change p into
'»/^i{^,(p)}

or

i/r^^jP. To compare this with the preceding expression

for the resultant, we must observe that ^^ = 1 + ^ and
a/tj = 1 + 1^ ; so that whereas in the one case the displace-

ment is (^ + i/r)(0, in the other it is ((ji + 'yjr + yfrcfy) p. In
one case only the addition, in the other the multiplication

of functions is involved. For this reason we shall speak

of the strain, whose effect is the same as that of two other

strains successively applied, as the product of the two
strains.

A strain in which a = h = 0, and h = — h', is called

a skew strain, and the displacement-function (^ a skew
function. It is the product of a rotation about the origin

and a uniform dilatation ; for the displacement of every

point p is perpendicular to op and proportional to it.

Every plane strain is the resultant of a pure and a
skew strain. For let a, h, h', b have the same meaning as

before ; these numbers are the sums of

a, h(h + h'), ^{h + h'), b, and 0, ^h-h'), \Qi-h), 0,

of which the former belong to a pure, and the latter to a
skew strain.

But every plane strain is the product of a rotation, a
uniform dilatation, and a shear. First rotate the plane

till the principal axes of the strain are brought into posi-

tion ; then give it uniform dilatation (or compression) till

the area of any portion is equal to the strained area ; the

remaining change can be produced by a pure shear.

When two strains are both very small, their product

and resultant are approximately the same strain.
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REPRESENTATION OF STRAINS BY VECTORS.

We have seen that if e, / be the principal elongations

of a pure strain (a, h, h, b), then e +f— a + h. Hence
if a + 6 = 0, we must have e +/= o. Hence the strain is

made by an elongation in one direction, combined with an
equal compression in the perpendicular direction. Such
a strain is approximately a shear when it is very small

;

we shall therefore call it a wry shear. Its characteristic

is that its displacement-conic is a rectangular hyperbola.

A wry shear accompanied by rotation shall be called a
wry strain; that is (a, h, h! , h) is a wry strain if a + J = 0.

Every strain is the resultant of a uniform dilatation

and a wry strain. For

(a, h, h', b)=^{a + b, 0,0, a + b) + ^{a-b, 2h, 2h', b-a).

Every wry strain is the resultant of a skew strain and
a wry shear. For

^{a-h, 2h, 2h', b-a)=^{0, h-h', h'- h, 0)

4- 1- {a — b, h + h' , h + h', h — a).

The magnitude of a skew strain (0, h,— h, 0) is h. Being
the product of a rotation by a uniform dilatation, it is not

specially related to any direction in the plane, and may
therefore be represented by a vector of length h perpen-

dicular to the plane.

The wrj'- shear (a, h, h, — a) has for its displacement-

conic a rectangular hyperbola whose transverse axis makes
with oX an angle 6 such that tan 26 = h : a (since in this

case a— b = 2a; the general value being tan = 2h : a — b).

Moreover if e, — e are its principal elongations, we have

in general {e —ff = (a — by + 4A''', and therefore in this

case ^ = a? + /i^. Hence if a wry shear be represented by
a vector in its plane, of length equal to its positive prin-

cipal elongation, making with oX an angle [26) equal to

twice the angle {$) which that elongation makes with it

;

the components (a, h) of this vector along oX and o Y will

represent in the same way the wry shears (a, 0, 0, — a) and
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(0, h, h, 0), having oX and oY respectively for axes and
asymptotes, of which the given wry shear is the resultant.

Let such a vector be called the base of the wry shear;

then our proposition is that the base of the resultant of two
wry shears is the resultant of their bases.

This is obvious, because the base of (a, h, h, — a) is

ai+hj.

This mode of representation is to a certain extent
arbitrary, because it depends upon the position of oX. It

will, however, be found useful in many ways.

Combining this with our previous representation of a
skew strain, we see that a wry strain in general may be
represented by a vector not necessarily in its plane, the
normal component of which represents the skew part of

the strain, while the component in the plane represents

the wry shear.

When a figure receives a uniform dilatation, without
rotation, we may regard it as merely multiplied by a
numerical ratio or scalar quantity. Thus the whole opera;-

tion of any plane strain may be regarded as the sum of a
scalar and a vector part. If we write, for example,

1 =(1, 0, 0, 1) ... (leaves the figure unaltered)

J = (1, 0, 0, — 1) ... (turns it over about oY)

J = (0, 1, 1, 0) . . . (interchanges oX and o Y)

K={0, 1, — 1, 0) ... (turns counter clock-wise through
a right angle)

then we shall have

(a,h,h',h) = ^{a + b) + ^ia-b)I+i{h + h')J+Uh-h')K,

and it will be easy, by combining these operations, to

verify that 7^=1, J'=l, K' = - 1, JK =^ I = - KJ,
KI=^J=-IK, IJ=K=^-JI,
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GENERAL STRAIN OF SOLID. PROPERTIES OF THE
ELLIPSOID.

When a solid is so strained that the lengths of all

parallel lines in it are altered in the same ratio, it is

said to undergo uniform or homogeneous strain. It follows

easily, as before, that all parallel planes remain parallel

planes, and undergo the same homogeneous strain, besides

being altered in their aspect.

A sphere is changed into a surface which is called an
ellipsoid, having the property that every plane section of

it is an ellipse. We may easily obtain its principal pro-

perties from those of the sphere, if we remember only

that the ratios of parallel lines are unaltered by the

strain.

Thus we know that if a plane be drawn through the

centre of a sphere, the tangent planes at all points where
it cuts the sphere are perpendicular to it, and therefore

parallel to the normal to it through the centre ; this normal
meets the sphere in two points where the tangent planes

are parallel to the first plane.

A plane A drawn through the centre of the ellipsoid

(a point such that all chords through it are bisected at it)

is called a diametral plane. The tangent planes at all

points where it cuts the surface are parallel to a certain

line through the centre, called the diameter conjugate to

the given plane ; this line cuts the surface in two
points where the tangent planes are parallel to the given

plane A.

Any two conjugate diameters of the ellipse in which
the ellipsoid is cut by the plane A, together with the

diameter conjugate to that plane, form a system of three

conjugate diameters; each of them is conjugate to the

plane containing the other two. They correspond to three

diameters of a sphere at right angles to one another. The
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planes containing them two and two are called conjugate

diametral planes.

Let oa, oh, oc be three conjugate semi-diameters of the

ellipsoid, p any point on the surface ; draw pn parallel to

/ N \

/

z

"7

/

oc to meet the plane oah in n, and then draw nm parallel

to oh to meet oa in m. These points will be the strained

positions of 0, A, B, G, P, M, N, when OA, OB, OC, are at

right angles and P is a point on the sphere. Now

OP^ = OM^ + MP^ = OM^ + MN' + NP'

;

or, remembeiing that OA = OB = 00 = OP, we have

OM^ MN\ NP' _
OA'

"*"

OB' "^ OC ~

But the ratios of parallel lines being unaltered by the strain,

031 : OA = om : oa, and MN : OB = mn : oh ; hence in

the ellipsoid also we have

om^ 7nr? np^ -

oa oh oc
"^^ + F^ + ? = 1'

if X, y, z are written for owi, mn, np, and a, h, c for oa, oh, oc.

Let a plane be drawn through perpendicular to OP.
It will cut the sphere in a great circle, whose area shall



174 DYNAMIC.

be called A ; the area is of course the same for all sec-

tions of the sphere by planes through 0. The angle

between this plane and OBG will be the same as the

angle between OP and OA, the straight lines perpendicu-

lar to those planes respectively. Call this angle 6. Then
if we project the area A on the plane OBC, the area of

the projection will be A cos 6. Now A is also ^the area

of the circle in which the plane OBG cuts the sphere.

Moreover OM = OP cos 9 = OA cos 6. Thus we see that

the projection of OP on OA hears the same ratio to OA that

the projection on the plane OBC o/" the section conjugate {at

right angles) to OP bears to the section by OBC.

The proposition thus proved for the sphere may be
extended to the ellipsoid if we remember that the ratio

of areas on the same or parallel planes is unaltered by the

strain. The projections must now be parallel projections;

that is, p is projected on oa by the line pm parallel to the

plane ohc ; and the conjugate area must be projected on
ohc by lines parallel to oa. The projected area will then

bear the same ratio to the section by ohc that om does

to oa.

"We shall use this proposition in representing the

strained position or the displacement of any vector, just

as we used the corresponding property of the ellipse.

At any point of a sphere, all the straight lines which
touch the surface lie in one plane, called the tangent

plane at that point. The same thing is therefore true

for the ellipsoid.

Now let a be a point on an ellipsoid, such that either

oa is the greatest distance from the centre, and the dis-

tance of all points immediately surrounding it is less than

oa, or else some of these are equal to oa but none greater.

There must clearly be such a point on the surface. If

now we cut the surface by a series of planes through oa,

the tangent lines to all these sections at a will be per-

pendicular to oa ; for each of these sections is either an
ellipse or a circle, and in the case of an ellipse oa must be
its semi-major axis. Consequently the tangent plane at

a is perpendicular to oa. Hence if ob and oc are the axes



AXES OF ELLIPSOID. 175

of the section made by the plane through o perpendicular

to oa, the three lines oa, ob, og form a system of three

conjugate diameters at right angles to one another.

These are called axes of the ellipsoid. The planes con-

taining them two and two are called principal planes of

the surface, which is evidently symmetrical in regard to

each of these planes.

If oa is equal to either oh or oc—say to oh—then the

section of the surface by the plane oah is a circle (being

an ellipse with equal axes) and any two diameters at

right angles in that plane are conjugate diameters. The
surface may then be made by rotating an ellipse about its

shorter axis oc. It is called an ohlate spheroid, or ohlatum.

This is approximately the figure of the Earth.

If oh and oc are equal, both being shorter than oa, the
section obc is a circle, and any two rectangular diameters
in that plane are conjugate. This surface may be made
by rotating an ellipse about its longer axis oa ; it is called

a prolate spheroid, or prolatum. It has two foci (those of

the rotating ellipse) the sum of whose distances from any
point of the suriace is equal to the major axis.

If, on the contrary, oa, oh, oc are all unequal, and in

descending order of magnitude, we may derive the ellip-

soid from a sphere having the same centre o and radius

oa, by reducing all lines parallel to oh in the ratio OB : ob,

and all lines parallel to oc in the ratio OG : oc. It will

then be clear that every set of semiconjugate diameters

op, oq, or on the same side of the plane oah lies entirely

outside the solid angle formed by the rectangular lines

oP, oQ, oR of which they are the strained positions.

Hence the axes are the only set of conjugate diameters at

right angles to one another.

It follows that in any homogeneous strain of a solid,

there are three directions at right angles to one another,

which remain perpendicular after the strain; namely
those which become the directions of the axes of the

ellipsoid into which the strain converts any sphere.

Lines drawn through any point in these directions are
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called principal axes of the strain, and the elongations

along them are called princij)al elongations.

If the axes remain parallel to their original directions,

the strain is called pure; if they are turned round, it is

accompanied by rotation.

REPEESENTATIOX OF PURE STRAIN BY ELLIPSOID.

We may now represent (in the case of a pure strain)

the strained position of any vector by means of an ellip-

soid, in a way entirely analogous to our previous repre-

sentation of a plane strain by means of an ellipse. Let
the principal elongations be e, f, g, and let p = \ + e,

q = l+f, r=l+g, so that the principal axes of the

strain are multiplied by p, q, r respectively. Now con-

struct an ellipsoid with semiaxes a, b, c such that the

strained length of a shall represent the area of the section

by the plane of b, c, and so for the others ; that is, so that

pa = Trbc, ql = TTca, re = irab. This will be effected if we
make ai\/p = b\/q = c\/r = ^(pgr) : tt. Thus the axes

of the ellipsoid must be taken inversely proportional to

the square roots of p, q, r, which agrees with the rule for

the ellipse.

This being so, it follows that the strained position of

any vector op represents the area of the section by the

conjugate diametral plane ; that is to say, it is at right

angles to this area, and contains as many linear centime-

ters as the area contains square ones. For since the pro-

jection of that area on the plane obc is to ttJc as om to oa,

it follows that the strained position of om represents that

projection ; and similarly the strained positions of mn and
np represent the projections on coa, aob. The strained

position of op is the vector-sum of these three lines, and
therefore represents the area of which they represent the

projections.

Thus the strained position of any radius of this ellip-

soid is a vector representing the area of the conjugate sec-

tion.
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We may easily see that the volumes of all portions of

the solid are altered in the same ratio by the strain. For
we may suppose these volumes cut up into small cubes
by systems of planes at right angles, so as to leave pieces

over at the boundaries. These cubes will be changed
into equal and similar parallelepipeds, and therefore a
volume made up of any number of the cubes will be
altered in the same ratio as any one cube. Now any
volume may be made up of cubes with an approximation
which can be made as close as we like by taking the

cubes small enough. Hence the proposition follows.

Now the cylinder standing on any diametral section

of a sphere, and bounded by the tangent planes parallel

to that section, is evidently of constant volume, whatever
diametral plane be taken. Hence, in the ellipsoid 1 also,

if we draw through every point of a diametral section a
line parallel to the conjugate diameter, these lines will

constitute a cylinder such that the volume of it enclosed

by the two tangent planes parallel to the diametral sec-

tion is constant, and therefore equal to ^irabc, its value

when the section is one of the principal planes. The
volume of a cylinder being the product of its base and
height, and the height of this one being the perpendicu-

lar distance between the parallel tangent planes, that is,

twice the perpendicular on either from the centre ; it

follows that the perpendicular on a tangent plane, multi-

plied by the area of the parallel diametral section, is

equal to a constant, h. Hence if ot be the perpendicular

on the tangent plane at p, the strained position of ojp is

along ot and equal in length to h : ot.

PROPERTIES OF HYPERBOLOID.

We have hitherto supposed p, q, r to be of the same
sign, which, for reasons already mentioned, is the case in

all actual strains. If, however, we wish to represent in

this way, not the strained position of op, but the displace-

ment of p, we must make the squared axes of our surface

inversely proportional to e, f, g, the principal- elongations.

C. 12
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So long as these are of the same sign, the displacement

maybe represented in the way just described; namely,

we can construct an ellipsoid so that the displacement of

any point p on it shall be a vector representing the area

of section conjugate to op. But when one is of a sign

different from the other two, we require other surfaces,

which shall be now described.

If we make a hyperbola rotate about its transverse

axis aa, we obtain a surface of two sheets, each sheet

being generated by a branch of the hyperbola. This sur-

face is called a hyperholoid of revolution of two sheets.

By the same revolution the conjugate hyperbola gene-
rates a surface of one sheet, the two branches changing
places after a rotation through two right angles. This
surface is called a hyperholoid of revolution of one sheet.

Now let the whole figure be subjected to a uniform
strain of any kind ; then the surfaces will no longer be
surfaces of revolution. They are then called hyperboloids

of one and two sheets respectively ; and in this particular

relation are called conjugate. To every hyperboloid of

one sheet there is a conjugate hyperboloid of two sheets,

and vice versa. The properties of these more general
hyperboloids may be derived from the particular case of

the surfaces of revolution, just as those of the ellipsoid

are derived from the sphere.

Then, the asymptotes of the revolving hyperbola gene-
rate a right cone, called the asymptotic cone, towards
which the surface approaches indefinitely as it gets fur-
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ther away from the centre. The strain will convert this

cone into an oblique cone (a cone standing on a circle

with the vertex not directly over the centre of the circle)

which will still be asymptotic. The shape of this cone
determines the shape of the two conjugate surfaces.

Every central section of a hyperboloid of revolution is

a conic ; an ellipse when only the one-sheeted surface is

cut, a hyperbola when both of the conjugate surfaces are

cut. Let the section be made by a plane through oh per-

pendicular to the plane of the paper. When the point q
is brought by the rotation to the position p vertically

above m, np^ = nrr^ + wp* or m'p^ = wl — nm^. Now

ncf - _ on

oar

on"

Vl'

ol
od^

_ on^ /Ik^ \_ nm^ on

Therefore -p- + —p = 1, or the point p lies on an ellipse

having ok for its semi-major axis, and a line og perpen-

dicular to the plane, of length equal to ob, for its semi-

rainor axis. In a precisely similar way it may be shewn
that a central section of the two-sheeted surface is a
hyperbola, whose conjugate hyperbola is the section of

the conjugate surface by the same plane.

Since after the strain an ellipse remains an ellipse

and a hyperbola a hyperbola, it follows that a central

section of any hyperboloid is a conic, is an ellipse when
only the one-sheeted surface is cut, and a hyperbola when
both the conjugate surfaces are cut.

12—2
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Now take any point jp on a hyperboloid of two sheets,

and draw through the centre a plane oqc parallel to the
tangent plane at p) this will cut the conjugate hyperbo-
loid in an ellipse. Let the whole figure receive a shear,

by sliding over one another the planes parallel to the
tangent plane at p, until op becomes perpendicular to

them ; then elongate all lines parallel to the shorter axis

oc of the ellipse until the ellipse becomes a circle. Then
every section by a plane through op will be a hyperbola

of which op is the transverse semi-axis, because it is per-

pendicular to the tangent at p. Consequently the other

axis is in the plane of the circle and equal to its diameter

;

that is to say, all these hyperbolas have the same axes,

and are therefore equal and similar. Hence the conju-

gate surfaces have been converted by this strain into

surfaces of revolution.

In this state of the figure it is clear (1) that the tan-

gent planes at points on the section by ohc are parallel to

op
; (2) that all sections parallel to obc are circles having

their centres on op. Hence in general if p be any point

on a hyperboloid of two sheets, and oqc a diametral plane

parallel to the tangent plane at p, the tangent planes at

all points of the section of the conjugate surface by oqc

are parallel to op, and all sections parallel to oqr are

similar and similarly situated ellipses having their centres

on op. If we draw through o a plane opr parallel to the

tangent plane at any point q of the section oqr, this will

cut the hyperboloid of two sheets in a hyperbola, the tan-

gent plane at every point of which will be parallel to oq,
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since any sucli point might be taken for the point p.
Hence if we take any two conjugate diameters oq, or of

the section oqr, the three lines op, oq, or are such that

the tangent plane at the extremity of each is parallel to

the other two. These lines are called a set of conjugate

diameters of either of the two surfaces; one of them
always meets the hyperboloid of two sheets, and the
other two meet the hyperboloid of one sheet.

Now in the surface of revolution, any section through
oa being a hyperbola whose semi-axes are equal to oa and

, , om'^ pm^ _ . »
i2 . 2

00, we nave —^ ~i^ = 1 > ^^ since pm = mn + np

\

we have —^ — -^5 ^ = !• Since each of these ratios
oa 00 oc

is unaltered by a homogeneous strain, the equation is

equally true for any hyperboloid of two sheets, if now
oa, oh, oc form a set of conjugate semi-diameters in the

sense just explained. It may be shewn in the same way
that in a hyperboloid of one sheet we should find

om^ mn^ np^ _ _

oa 00 OG

The two equations may also be written respectively

c^ y c' - '

x, y; z being written for ow, mn, np, as before.

It follows immediately that any plane parallel to aob

cuts the surfaces in two hyperbolae whose common centre

is on oc, the asymptotes of all being parallel.

DISPLACEMENT-QUADRIC.

It shall now be proved that any homogeneous strain of

a solid may be represented by means of a central quadric

surface, namely, either an ellipsoid or a pair of conjugate

hyperboloids, in the following manner. The displace-
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ment of any point p of the surface, relative to its centre o,

will be at right angles to the diametral section conjugate

to op, and will contain as many centimeters of length as

that section contains square centimeters of area. For this

purpose it is necessary to shew that the hyperboloids have
the same property which we proved true for the ellipsoid

;

namely that if a section A and its conjugate diameter a
be respectively projected upon a section B and its conju-

gate diameter /5, by lines parallel to /3 and B respectively,

the ratio of the projection of yl to 5 is equal to the ratio

of the projection of a to /3. We shall prove this first for

surfaces of revolution, and then extend it to the other sur-

faces by a homogeneous strain.

When the central section is a h5'^perbola, we cannot

properly speak of its area at all. In this case we shall

suppose it to be replaced by an ellipse having the same
axes ; so that in general, if the semi-axes of an ellipse or

hyperbola are a, h, the area is always to be reckoned as

TTOb.

Let the figure represent two conjugate hyperbolae,

which, by revolving about the axis ad, are to generate a

pair of conjugate hyperboloids of revolution. The diame-

tral section conjugate to op

is made by a plane through

9.i
perpendicular to the

paper. The semi-axes of

this section are oq and a

line oc perpendicular to the

paper equal in length to oh.

The projection of the section

on oh is therefore ir .nq. oc,

and its ratio to the area of

the section ohc is 7r.nq.0c : ir.oh .oc = nq : oh. But
nq : oh = om : oa ; thus the projection of section oqc on

ohc bears the same ratio to section 06c that projection of

op on oa bears to oa.

In the same way, the section conjugate to oq is made
by a plane through op perpendicular to the paper, and its

" area" is to be reckoned as tt .op. oc. It follows at once
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that its projection on the plane oac, namely it . om . oc,

bears the same ratio to section oac that nq bears to ob.

Passing now to the case of hyperboloids not of revolu-

tion, we have proved that any pair of conjugate surfaces

may be altered by homogeneous strain into surfaces of

revolution, so that ant/ given diameter aa of the hyperbo-
loid of two sheets becomes the axis of revolution. And
since the ratios of parallel lengths and of parallel areas are

unaltered by the strain, it follows that the property just

proved for surfaces of revolution is true for all hyperbo-
loids.

This being so, let e, f, g be principal elongations of a
homogeneous strain, and let a, h, c be three lengths such
that a\/e=:h \/f= Csjg — \/(efg) : ir. If any of the quan-
tities e, f, g be negative, we must in this formula consider

it replaced by its absolute value, li e,f, g are all of the

same sign, construct an ellipsoid with semi-axes a, b, c;

but if one is of a sign different from that of the other two,

construct a pair of conjugate hyperboloids with the same
semi-axes, so that the axes whose elongations are of the

same sign shall meet the one-sheeted surface, and the

remaining axis the two-sheeted surface. The relation

between w, y, z in the quadric surface or surfaces thus

constructed, whether ellipsoid or hyperboloids, is

'ir{ex^+fy^ + gz')==±efg,

as may be seen by comparing the values just given for

s? 11^ ^
a, b, c with the equation —2±jj±—2=±l. The surface

for which tt (ex^ +f!/^ + g^^) = ^f9 ^s called the displacement-

guadric. If e, f, g are all positive or all negative, the

displacement-quadric is an ellipse ; if two of them are

positive and one negative, or if one is positive and two
negative, it is a hyperboloid of two sheets; but in the latter

case "we must call in the assistance of the conjugate surface

in order to represent the strain.

If then oa, ob, oc be semi-axes of the displacement-

quadric, the displacement of the point a is ea which is

irbc, the area of the conjugate section ; and this displace-
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ment is along oa, and therefore normal to the area of that

section. When the displacement-quadric is a hyperboloid,

elliptic and hyperbolic areas must be regarded as having

different signs ; but which sign is to be attributed to each

depends on the signs of e, f, g, and it will be found in fact

that the elliptic area is always of the same sign as the pro-

duct efg.

Since the displacements of a, h, c are vectors repre-

senting the conjugate areas, it follows that the displace-

ment of any point) p on the displacement-quadric or its

conjugate surface is a vector representing the area of

section conjugate to op. For we have shewn that the

components of that area, namely its projections on the

principal planes, bear the same ratio to the principal areas

irbc, TTca, trah, that the components of op, namely its pro-

jections on the axes, bear to those axes. Now if om be

the projection of op on oa, the displacement of m is —
01Tb

X the displacement of a, that is, it is — x Trie. Gen-
oa

sequently the displacement of m is a vector representing

the projection on obc of the area conjugate to op. Now
the displacement oip is the resultant of the displacements

of its projections on the axes ; and therefore it represents

the area which is the resultant of the three projections

here ^coasidered, namely, the area of section conjugate

to op.

The case of a point h lying on the asymptotic cone of

the displacement-quadric requires some explanation. In
that case the length of the line drawn in the direction ok
to meet the surface is in-

finite, and the displace-

ment of its end is infinite

also. The conjugate sec-

tion is made by a plane
through ok touching the
asymptotic cone, which
cuts the conjugate surface

in two parallel straight

lines. In the case of sur-
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faces of revolution it is clear that the distance between
these lines is hh'; they lie on either side of ok in a plane

through it perpendicular to the paper. Thus the dis-

placement of p (the infinitely distant point on ok) is

IT .ob . op, perpendicular to ok in the plane of the paper.

Hence the displacement of A; is tt .ob. ok in the same
direction. And generally the displacement is tt . ok multi-

plied by half the breadth of the conjugate section.

In any other case if ot be the perpendicular on the

tangent plane at p, the displacement of p is parallel to ot

and equal to Trabc : ot. For the perpendicular on a
tangent plane, multiplied by the area of the parallel dia-

metral section, is constant, and therefore equal to Trabc,

This follows at once for surfaces of revolution from the cor-

responding property of the hyperbola ; and it is extended
to any hyperboloids by the consideration that all volumes
are altered in the same ratio by a homogeneous strain.

We shall write H for irabc or efg : rr^, so that displace-

ment oip=H : ot.

LINEAR FUNCTION OF A VECTOR.

Just as in the case of a plane strain, the strained

position of a vector or the displacement of its end is said

to be a linear function of the original vector when the

strain is homogeneous. If the displacement of the end of

p be denoted by ^(p), the strained position of it is p 4- ^(p)
= (1 + <^) p. When the strain is pure, ^ is said to be a

pure function.

Let i, j, k be three unit-vectors at right angles to one
another, and let

<f)i = ai + kj + ff'k,

<f)j
= h'i + bj +fk,

<f)k=gi+f'j + ck. ^
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Then if p = xi + yj + zk, we shall have (pp = xcfii + y(pj

+ ztpk, so that the function of every vector can be ex-

pressed in terms of these, and the strain is entirely spe-

cified by means of the nine quantities a, h, c, f, g, h,

f,
g', Ti. The equations just written down are sometimes

conveniently abbreviated as follows :

—

</>;, <^j, <^^' = ( a li g )( i, j, k), or (f)= { a h g )

h! h f
9 f

K h f
9 f c

and the form (a h ^' ) is also called a matrix. Thus

K h f
9 f ^

every strain has a certain matrix belonging to it, which
serves to define the strain by means of its displacement

function.

When the strain is pure, the scalar 2^Toduct of op and
the displacement of ^ is — //, if ^ is a point on the dis-

placement-quadric. If pq is

the displacement of p, the.

scalar product is

op . pq cos opq ;

but we know that

pq =H : ot,

and

op cos opq = — op cos put = — ot,

which proves the theorem. Hence if p is the step from

the centre to a point on a quadric surface, Sp(fip = — H,
whence H is tt times the product of the semi-axes of the

surface.

The scalar product of two vectors is the negative sum
of the products of their components along the axes. For
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op COS poq is the projection of

op on oq, which is the sum of

the projections of on, mn, mp
on oq. Let x, y, z be the

components of op, x^, y^, s,

those of oq, and r, i\ the

lengths of op and oq. Then
if oq makes angles a, ^, y with

oX, Y, oZ, we must have

cos a = x^: i\ , cos /3 = t/j : 7\

,

cos 7 = ^1 : r^.

And op cos poq = on cos (^oX + mp cos ^-oY + ?i;« cos qoZ

— X cos a + 2/ cos /S + s cos 7 = xx^ + ^y^ + ^^-^ : r^.

Therefore Sop .oq — — op.oq cos poq = — [xx^ + yy^ + zz^.

Let p, o- be two vectors from the centre to points on
the displacement-quadric ; then Spcjxr = Sa<pp. Since

<f)(7
is a vector at right angles to the

section conjugate to o-, whose length

represents the area of that section,

Sp<j)(T will be the volume of a cylinder

standing on that section and having p
for its axis. We have to shew that this

volume is equal to that of a cylinder

standing on the section (ftp and having a for its axis.

This proposition is obvious when the quadric is a sphere

;

whence it follows for the ellipsoid by means of a homo-
geneous strain. For a hyperboloid of revolution we may
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deduce it from the property already proved for the hyper-

bola, that the triangles ops, orq are equal if op is con-

jugate to oq and or to os. For the section conjugate to

op is TT . oc . oq if oc is the semi-diameter perpendicular

to the plane of the paper; and the volume of a cylinder

standing on this with or for axis will be rrr .oc . x twice

triangle orq, which is equal to tt . oc x twice triangle ops,

the volume of a cylinder standing on the section ocs

with op for axis. From this the proposition follows by
a homogeneous strain for all hyperboloids.

Analysing this proposition to the expressions just

given for <l)i, <f>j, <f)k, we may shew that when the strain is

pure f=f, 9 = 9 , ^ = ^'. Foi' we have

^i = ai + A; + gh, (j)j = h'i + hj +fk ;

and therefore

Si(j>j = — h', Sj<f)i = — h.

Thus a pure strain depends only on the six quantities

a, h, c, f, 9, h, whereas a strain not known to be pure is

specified by nine quantities.

We may now prove that

Sp<^p = S{(ci + yj + zk) {x(p{ + i/^j + z<j>k)

= - {ax'' + hf + cz^ + Ifyz + "igzx -f- llixy),

so that

a^ 4- ly^ + cz'-\- 2fyz + ^gzx + '2kxy = H.

This is the relation which holds good between x, y, z for

all points on the displacement-quadric.

VARYING STRAIN.

In a homogeneous strain, if we suppose one point of

the body to be at rest, and draw any straight line through

it, the displacements of points on this line will be all in

the same direction and proportional to the distance from
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the fixed point. Hence the relative displacement of the

two points at a unit distance along this line will be equal
to the rate of change of the displacement per unit distance

as we go along the line. Let a represent the displace-

ment of any point, and let a be the step from a point j>

to a point q. The symbol d^a shall mean the change in

a due to the step a ; it will therefore be the displacement
of q relative to p. This is what we have previously
denoted by ^a ; so that we may now write d^a- = ^a,

where cr is the displacement and ^ the displacement-
function.

It thus appears that the strain at any point of a body
does not depend on the actual displacement, but on the
variation of the displacement in the neighbourhood of the
point. When a body is subject to strain which is not
homogeneous, we can find, for every point of the body, a
homogeneous strain such that the rate of change of the

displacement in every direction due to the homogeneous
strain shall be the same as the rate of change of displace-

ment in that direction in the actual condition of the body.

This homogeneous strain is called the strain at the point.

It varies, in general, from one point to another.

Consider now a point p of the body, and draw a line

pq through it, which shall be called a. As we start from

p to go along pq, there is a certain rate of change of the

displacement <t. Let daO" represent what the difference

in displacement of q and p would be if this rate of change
were uniform from, p to q. That is to say, d^a- is the dis-

placement of q relative to p in the homogeneous strain

which coincides with the actual strain at p. Hence if ^
is the displacement-function of this strain, d^a- = ^a

;'

where now 9aO- means the rate of change as we go in the

direction a, multiplied by the length of a. For example,

^^a is the same thing as we have called d^cr ; so 9,a- = d^a,

and dj^a = d^a; because i, j, k are of unit length.

Hence if the components of a- are u, v, w, so that

a- = ui + vj -h wk,
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we shall find

<j)i = "djj = dji . i + dj) . j + d^w . 7c,

4>j = dyO- = d„u . i + dyV . j + d^w . k,

<})k = djj- = d^u . i + d^v . j + 9,w . 7c,

and consequently the matrix of the function <p is

( d^u, d,v, d^w
)

I

9„w, d„v, dyW

I
9,w, d^v, d^w



CHAPTER II. STRAIN-VELOCITIES.

HOMOGENEOUS STRAIN-FLUX.

We have already investigated all those velocity-systems

which are consistent with rigidity, and shewn how to

compound them together. It is probable, however, that

no body in nature is ever rigid for so much as a second
together. The most solid masonry is constantly transmit-

ting vibrations which it receives from the earth's surface

and from the air; these vibrations constitute minute
changes of shape. Other minute changes of shape are due
to the varying position of attracting bodies, such as the

moon. The spins and twists, therefore, which we have
investigated are to be regarded as ideal motions, to which
certain natural motions more or less closely approximate.
The motions of fluids, however, such as water or air, are

not even approximately consistent with rigidity, and to

describe these we must consider some other velocity-

systems. As before, we have to describe ideal motions,

which can be dealt with by exact methods, but which only

approximately represent the motions which actually take

place.

Imagine an elastic string, one end of which is fixed,

while the other end moves uniformly along a straight line

passing through the fixed end, so that the string is always

stretched along the same line. If the strain is always

homogeneous, the velocities of any two points on the

string will at any moment be proportional to their dis-

tances from the fixed end.

Now consider an infinite plane surface, with air on one

side of it ; and let those particles of air which lie along

any straight line perpendicular to the plane be moving
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like the particles of the elastic string just considered;

that is to say, let the velocity at every point be perpen-
dicular to the plane and proportional to the distance from
it. Let a similar motion take place on the other side of

the plane, but in the opposite direction; that is, so that

both motions are towards the plane, or both away from it.

If the velocity at distance x from the plane is ex, and if

we suppose the velocity of every particle to remain uniform
for one second, then at the end of that second there will

be produced a uniform elongation e perpendicular to the

plane. For the moment, we may call this velocity-system

a stretch perpendicular to the given plane.

Take now three planes intersecting at right angles in

a point 0, and combine together at every point of space

the velocities due to stretches e,/,^' perpendicular to these

three planes respectively. We shall then have a velocity-

system such that if the velocity of every particle remains
uniform for one second, there will be produced a pure
homogeneous strain of which e, f, g are the principal elon-

gations.

Lastly, combine with this velocity-system a spin about
some axis passing through the point o. The resultant

velocity-system has then the following properties.

1. The point o is at rest.

2. The velocities of all points lying in a straight line

through are parallel, and proportional to the distance

from 0.

8. If the velocity of every point be kept uniform for

one second, there will be produced at the end of that

second a homogeneous strain.

Let cr be the displacement at the end of one second of

a particle whose position-vector from o as origin was origi-

nally a, then a = 0a, where ^ is the displacement-function

of the homogeneous strain. Hence the equation to the

uniform motion of this particle during the second is

p = a -h tj>'x.

Consequently at the time f = 0, the particle whose position*
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vector is a has the velocity <^a. The motion is therefore

such that the velocity at every point is a linear function of
the position-vector of the point. Such a velocity-system

may be called a homogeneous strain-fiux. We may formally

define it as follows

;

If at any instant the velocity-system of a body he such

that by keeping the velocity of each point uniform for one

second we should produce a homogeneous strain ^, then at

that instant the body is said to have the homogeneous strain-

fiux (f).

If we combine with this velocity-system a translation

equal and opposite to the velocity of any point p, the

resultant will be a new homogeneous strain-flux with the

point p for centre. For if we keep all velocities constant

for a second, we shall produce a homogeneous strain

together with a translation restoring p to its place ; that

is, a homogeneous strain in which p is not moved.

It is clear that the resultant of two homogeneous strain-

fluxes is again a homogeneous strain-flux ; but in this

term we must include as special cases the motions con-

sistent with rigidity. .A twist may be regarded as a homo-
geneous strain-flux whose centre o is infinitely distant ; in

the still more special case of a spin, the centre is indeter-

minate, being any point whatever on the axis.

The latter case is distinguished by the function ^ being

a s^ew function. For let the spin (o=pi + qj+rk, then

the velocity of any point whose position-vector is p will be

Vcop, Consequently we have
<f)p

= Vcop, and therefore

^i = Vcoi = \-fj— qk,

<}ij = Vcoj = — ri +pk,

<^k = Vcok = +qi— pj ;

so that the matrix of (p is

( 0, +r, -q)
-r, 0, +p
+ q, -p,

We may now separate any given homogeneous strain-

c. 13



194. DYNAMIC.

flux into the pure part of it and the spin. For it is evident
that

(a,h,g') = { a, U^ + h'), iig +g'))

\h',b,f \l{h + h'), b, Uf+f)

+ ( 0, \{h-K), W-9))
iih'-h), 0, h(f-f)
\(3-9\w-n

Here the first of the matrices on the right hand belongs

to a pure function, and the second to a spin, whose com-
ponents are \ {/—/')> \ (9 ~9')> 2 (^ ~ ^')- The resolution

cannot be effected in any other way ; for to change the

spin into any other (not about a parallel axis) we must
combine a spin with it. The resultant of the pure strain-

flux and of this spin reversed will be no longer a pure
strain-flux.

CIRCULATION.

Consider a plane curve joining two points p and q.

Let a line be drawn through every point of the curve, per-

pendicular to its plane, representing the component of

velocity along the tangent to the

curve at that point. All these lines

will trace out a strip or riband

standing on the curve. The area

of this strip is called the circula-

tion along the curve from p to q.

When the resolved part of the

velocity is in the direction from q to p, it is to be drawn

below the plane, and that part of the area is to be

reckoned negative. Hence the circulations from ptoq and

from qtop are equal in magnitude but of opposite sign.

The circulation may also be described as follows.

Divide the length of the cui-ve into small pieces, of which

8k is one. Let o- be the velocity of some point included
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in the piece BX, then — SaBX •will be the resolved part of

this velocity along the curve, multipled by the length of

S\. The sum — "XSaBX of such quantities for all pieces of

the curve may be made to approximate as near as we
please to a quantity —JSadX by increasing the number
and diminishing the length of the pieces. This quantity
— JSa-dX is called the circulation along the curve from

p to q. The second definition is equally applicable to a
non-plane curve, on which we cannot draw a riband which
shall represent the circulation by its area.

If we suppose the point q to move along the curve pq
with unit velocity, the rate of change of the circulation

from p to q will be the component along the tangent at q
of the instantaneous velocity of the body at q. For if this

component remained constant over a unit length of tie

curve, the chauge of circulation would be the component
multiplied by the unit of length. Thus if s denote the

length of the arc pq, and C the circulation from p to q,

d^C=v cos 0, where v = velocity at q, and 6 = angle it

makes with the tangent to pq.

In general, if a- be any vector which has a definite

value at every point of space, the quantity —JSadX is

called the line-integral of a- along the curve X ; so that we
may say that the circulation is the line-integral of the

velocity.

If an area be divided into parts, the circulation round
the whole area is equal to the sum of the circulations round
the parts. The area abed, for example, is made up of abc

and acd. The circulation round abc is

made up of that along abc and that

along ca. The circulation round acd

is made up of that along ac and that

along cda. Now the circulation along

ca is equal and opposite to that along ac, so that when we
put the circulations round the parts together, these two
portions destroy one another, and the sum is the circula-

tion round abed. The same reasoning applies to any
number of parts. It it clear that the proposition holds

equally good, whether the areas are on a plane or on any
other surface.

13—2
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We raay conveniently write {ah) for the circulation

along ah. Thus {abed) = {abca) + {acda).

In a homogeneous strain-flux, the circulation round
two closed curves is the same if one can be made to coin-

cide with the other by a step of translation. For if the
positions of two corresponding points differ by the constant
vector a, then the velocities differ by the constant quantity

</>a ; and the difference of the circulations is merely the
length of ^a multiplied by the projection of the closed

curve on a line parallel to ^a, which is of course zero.

Since the circulation round a closed curve is thus un-
altered by the same velocity being given to all its points,

W3 may if we like reduce any one point to rest, without
altering the circulation round any closed curve.

The circulation round any two parallelograms of the

same area is the same. We may change ahdc into ahfe by
adding ace and subtracting hdf; and
the circulation round these two tri-

angles is the same. By repeating this

process we may make one parallelo-

gram into a translation of any other of

equal area. By equal area is of course

implied that they are in the same or parallel planes.

The circulation round any parallelogram is double of

that round a triangle of half its area.

Let 0, the middle point of ad, be brought

to rest. Then the circulation along ad
is zero, and the velocities at correspond-

ing points of ah and dc being equal and
opposite, the circulation along ah is equal

to that along do ; similarly that along hd is equal to that

along ca. Thus [ah] + (hd) + (da) = {ad) + {dc) + {ca), or

the circulations round the triangles ahd, adc are equal,

and therefore each half of the circulation round ahdc.

It follows that the circulation round any two triangles

of the same area is the same.

Hence tlie circulations 7'ound any two areas in the

same or parallel planes are proportional to those areas.
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For we may replace each of them by a polygon with short

rectilineal sides, and these polygons may then be divided

into small equal triangles. The areas will be nearly as

the numbers of these triangles with an approximation
which can be made as close as we like by making the tri-

angles small enough. But the circulation round each
polygon is the sura of the circulations round its compo-
nent triangles ; therefore the two circulations are also as

the numbers of the triangles approximately, and therefore

as the two areas exactly.

If a, /3 are the sides of a parallelogram, the circulation

round it is S^<j)oi. — >Sfa0/3. Let a = aZ>, /8 = ac. Then the

sum of the circulations along ab and
dc is the difference of those along ab ^i

and cd\ which is the length of a multi- -/
plied by the resolved part of ^/8 along /
it, or — 82<j>^. Similarly the sum of

^f ^c

—

the circulations along bd and ca is the

difference of those along bd and ac, which is seen in the
same way to be S^(f>2. Hence the proposition.

The circulation round any plane area is equal to twice

die product of the area by the compotient of spin perpendi-

cular to it. A unit area in the plane oXY is the square

whose sides are i,j. Now <pi = ai + hj+g'k, ^j=h'i+bj+f/c;
therefore Si(fyj — Sj^i = h — h', which is twice the compo-
nent of spin round oZ. Now any plane whatever may be

taken for the plane of oXY\ whence the proposition.

STRAIN-FLUX NOT HOMOGENEOUS.

In the case of a homogeneous strain-flux, if we take

any point p of the body and draw a straight line pq through

it, the velocities of points on this line, relative to p, will

all be parallel and proportional to the distance from p
along the line. Consequently the rate of change of the

velocity, as we go along the line pq, is constant.

When the strain-flux is not homogeneous, this rate of

change of the velocity will no longer in general be con-

stant. But we may imagine a homogeneous strain-flux
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which is such that the rate of change of velocity due to

it. in any direction, is the same as the rate of change at p
when we are moving in that direction in the actual con-

dition of the body. This homogeneous strain-flux will

then be called the strain-flux at p. It will in general vary

from one point of the body to another.

In order that there may be a strain-flux at p at all, it

is necessary that the velocity should change gradually as

we pass through p in any direction. That is to say, there

must be a rate of change up to p, and a rate of change on
from p, and these must be equal. When this is the case,

the entire strain-flux of the body may be said to be ele-

mentally homogeneous, or homogeneous in its smallest parts.

Any small portion of the body moves with an approxi-

mately homogeneous strain-flux, and the approximation

may be made as close as we like by taking the portion

small enough. But if one portion of the body is sliding

over another portion with finite velocity, this is not the

case. In crossing the common surface of the two portions,

we should find a sudden jump in the velocity. Such dis-

continuities have to be separately considered.

Let now a be any vector drawn through the point p ;

and let da<T, as before, mean the change that would be pro-

duced in o- by passing from one end of a to the other, if

the rate of change per unit length remained uniformly

what it actually is at p. Then the strain-flux at p has a
velocity-function ^ such that d^ir — ^2. If therefore

tr = Mt -f ij + wk,

the matrix of <}> is

d^u dj) d^w)

dgU dyV dyW

d^u d^v d,w

Consequently the spin w is

i{{d„w — d^v) i + {d^u — d^w)j + (b^v — d^u)1c].

It follows from this formula that if two velocity-systems
are compounded together, the spin at any point in the

resultant motion is the resultant of the two spins in the

component motions.
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LINES OF FLOW AND VORTEX-LINES.

At every instant a moving body (to fix the ideas, con-

sider a mass of water) has a certain velocity-system, i.e.

every point in the body has a certain velocity a. A curve
such that its tangent at every point is in the direction of

the velocity of that point is called a line of flow. It is

clear that a line of flow can be drawn through any point

of the body, so that at every instant there is a system of

lines of flow. If the body has a motion of translation, the

lines of flow are straight lines in the direction of the

translation. If it rotates about an axis, the lines of flow

are circles round the axis. If fluid diverges in all direc-

tions from a point, the lines of flow are straight lines

through that point.

It is important to distinguish a line of flow from the

actual path of a particle of the body. A line of flow

relates to the state of motion at a given instant, and in

general the system of lines of flow changes as the motion

goes on. Thus while the path of a particle touches at

every instant the instantaneous line of flow which passes

through the particle, it does not in general coincide with

any line of flow. The particular case in which the system

of lines of flow does not alter, and in which, therefore,

each of them is actually the path of a stream of particles,

is called steady motion. In that case, the lines of flow

are called stream-lines.

Thus, if a rigid body move about a fixed point, we
know that its velocity-system at every instant is that of a
spin about some axis through the fixed point, and conse-

quently the lines of flow are circles about that axis. But
in general the axis changes as the motion goes on, and the

path of a particle of the body is not any of these circles.

If we take a small closed curve, and draw lines of flow

through all points on it, the tubular surface traced out

by these lines is called a tube of flow. In the case of

steady motion all tubes of flow are permanent, and the

portion of the body which is inside such a tube does not

come out of it.
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In general, a body has also at every instant a certain

spin-system; i.e. at every point of the body there is a
certain spin w. In fact, if the strain-flux is elementally

homogeneous, there is at every point a homogeneous strain-

flux which is the resultant of a pure strain-flux and a
spin (0.

A curve such that its tangent at every point is in the

direction of the spin at that point is called a vortex-line.

If we draw vortex-lines through all the points of a small

closed curve, we shall form a tubular surface which may
be called a tube of spin; the part of the body inside the

tube is called a vortex-filament. In the cases of fluid mo-
tion which occur most often in practice, there is a finite

number of vortex-filaments in different parts of the fluid,

but the remaining parts have no spin.

CIRCULATION IN NON-HOMOGENEOUS STRAIN-FLUX.

If we consider any small area Sx, which may be taken
to be approximately plane, the strain-flux in its neighbour-

hood is approximately homogeneous ; and if a be the spin

at a point inside of the area, the circulation round the area

will be approximately equal to its magnitude multiplied

by twice the component of spin perpendicular to it; that

is, it will be approximately — S^S'coSa, where Sa is regarded

as a vector representing the area, and therefore perpen-

dicular to it. This approximation is closer, the smaller

the area is taken.

Now let abed be any closed contour, whether plane or

not, and let us suppose it to be covered by a cap, as aec,

so that the contour is the boundary of

a certain area on the surface of this cap.

If this area be divided into a great

number of very small pieces, as/, each

of these may be taken to be approxi- ° v ^
mately plane. And the circulation round

abed will be the sum of the circulations round all the small

pieces. Thus it will be approximately equal to — 2S SwBoi,
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where Sx is one of the small pieces, and to the spin at

some point within it. The approximation may be made
as close as we like by taking the pieces small enough, and
therefore the circulation is exactly equal to the integral
— 2JSo)Sx. If 8\ be a small piece of the contour ahcd, we
know that the circulation is also equal to — jSadX ; and
consequently we have 2 JScodu. = JSadX.

In general, if o) is any vector having a definite value

at every point of space, the integral — JSwdct, taken over

any area, plane or curved, is called the surface-integral of

the vector over that area. We may therefore state our
proposition thus : the line-integral of the velocity round
any contour is equal to twice the surface-integral of the

spin over any cap covering the contour.

Let us now draw another cap, age, covering the con-

tour. Then the surface-integral of the spin

over age must be equal to that over aec,

because each is half the line-integral of

velocity round abed. But in one case the

vectors representing small pieces of area

Avill all be drawn inwards, and in the other

outwards. If then we suppose them all

to be drawn outwards, the surface-integral

over the entire closed surface aecg will be zero. It is in

fact obvious that if we divide the area of any closed sur-

face into small pieces, and suppose each of these to be
gone round in a counter-clockwise direction, as viewed

from outside, the sum of all their circulations will be zero,

since each boundary line is traversed twice, in opposite

directions.

We learn, therefore, that the surface-integral of the

spin over any closed surface is zero. The closed surface

may be that of a body having no holes through it, as in

the figure, or it may be that of a body with any number
of holes through it ; for example, the surface of an anchor-

ring, or of a solid figure-of-eight.

Let us now apply this proposition to a portion of a

tuhe of spin, cut off at a and 6 by surfaces of any form.
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This closed surface consists of the two ends
at a and b, and of the tubular portion

between them. At every point of the

tubular portion the axis of spin is tangent
to the vortex line through that point,

which lies entirely in the surface ; conse-

quently it has no component normal to the

surface. Therefore the tubular portion of

the surface contributes nothing to the

surface-integral. It follows that the sum of the surface-

integrals over the two ends is zero. Now the surface-

integral over either end is half the circulation round its

boundary ; but since the lines representing pieces of area

are to be drawn outwards in both cases, these boundaries

must be gone round in opposite directions. Since then,

when they are traversed in opposite directions the circu-

lations are equal and opposite in sign, it follows that when
they are traversed in the same direction the circulations

are the same. Or, the circulation is the same round any
two sections of a tube of spin.

When the tube is small, the spin at any part of it is

inversely proportional to the area of normal section. For
then the surface-integral over the section is approximately

equal to the spin at any point of it multiplied by the area

of the section ; and we have seen that this surface-integral

is constant. Hence a vortex-filament rotates faster in pro-

portion as it gets thinner.

This shews us also that a vortex-filament cannot come
to an end within the fluid, but must either return into

itself, each vortex-line forming a closed curve, as in the

case of a smoke-ring, or else end at the surface of the

fluid, where the velocity no longer changes continuously
;

and consequently our previous reasoning does not apply.

Such a vortex-filament may be formed by drawing the

bowl of a teaspoon, half immersed, across the surface of a

cup of tea; the filament goes round the edge of the sub-

merged half of the bowl, and the two ends of it may be

seen rotating as eddies on the surface.
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IRROTATIONAL MOTION.

If it is possible to cover a contour by a cap such that

there is no spin at any point of it, the circulation round
the contour will be zero, since it is equal

to twice the surface-integral of the spin, ^
taken over the cap. Let p and q be two
points on such a contour paqh, then the

circulation from ^ to g is the same along

paq as along phq. For

{paq) + {qhp) = 0, or {paq) = {phq).

Therefore

Of tivo paths goingfrom p to q, if it is possible to move
one into coincidence with the other without crossing any
vortex-line, the circulation along them is the same.

Where there is no spin, the motion is called irro-

tational. If there is no spin anywhere, so that the motion
is irrotational throughout all space, the circulation from one

point to another is independent of the path along which it

is reckoned. Let a point o be taken arbitrarily, then for

every point p in the body there is a certain definite quan-
tity, namely, the circulation along any path from o to jix

This is called the velocity-potential at p. If j) be moved
about so as to keep its velocity-potential constant, it will

trace out a surface which is called an equipotential surface.

It is clear that we may draw an equipotential surface

through every point of space, and in this way we shall

have a system of equipotential surfaces. There is no cir-

culation along any line drawn on an equipotential surface
;

because the circulation from one point to another is equal

to the difference of their velocity-potentials. (Circulation

fromp to q = circ. from o to q — circ. from o to p.)

Suppose, for example, that a body has a motion of

translation. Then a plane perpendicular to the direction

of motion will be an equipotential surface ; for there is no
component of velocity along any line in such a plane, and
therefore the circulation along that line is zero. If we
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choose any point in this plane for the point o, the velocity-

potential for all points in the plane will be zero ; and for

all other points will be proportional to the distance from
this plane, being positive on the side towards which the

body is moving, and negative on the other side.

EQUIPOTENTIAL SUKFACES.

In general, the equipotential surfaces are perpendicular

to the lines of flow. We have already seen that if we
suppose the velocity of every point of the body to be
marked down at that point, so as to constitute a per-

manent diagram of the state of motion of the body at

a given instant, then the rate of change of the circulation

from to p, when p moves in the diagram with unit

velocity, is the component along the tangent to the path

of p of the instantaneous velocity at the point p. Hence
if we now use P to denote the velocity-potential at p,
viz. the circulation from o to p, we shall have d^P = v cos 6,

where v is the magnitude of the instantaneous velocity at

J),
and 6 the angle it makes with the direction of s. Now

those directions which lie in the equipotential surface

through p are such that there is no change of potential

when p moves along them, or d,P = 0. Hence either v =
or cos ^ = ; that is, if there is any velocity, it is perpen-

dicular to the equipotential surface.

If the motion of p is along a line of flow, cos 6=1^
and 9,P= v ; that is to say, the velocity at any point is the

rate of change of potential per unit of length along a line

offlow. Hence if we take two equipotential surfaces very

near to one another, the velocity at various points on one
of these surfaces will be inversely proportional to the

distance between them, with an approximation which is

closer the nearer the surfaces are taken to one another.

For the difference of velocity-potential between a point

on one and a point on the other is constant ; and the rate of

change of P per unit of length is inversely proportional to

the distance required to produce a given change in P.
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Hence if we draw surfaces corresponding to the values

0. 1, 2,... of the velocity-potential, this system of surfaces

will constitute a sort of diagram of the state of motion of

the body. The velocity is everywhere at right angles

to the equipotential surfaces, and where these are close

together the velocity is large, where they are far apart

it is small.

MOTION PARTLY IRROTATIONAL.

Suppose that in a mass of fluid there is a single vortex-

ring of any form (i.e. a vortex-filament returning into

itself), but that there is no rotation in any other part

of the fluid. Consider a closed curve which is once linked

with the ring, such as abc. The circulation round such
a curve is equal to the circulation round a section of the
vortex-filament, which we know to be the same for all

sections ; for the curve can be moved until it coincides

with the section without crossing any vortex-line. Let
the circulation round abo be called G.

We will now consider the circulation from a point

to a point p. Let the circulation along a path which
goes from o to j) entirely outside the vortex-ring be called

ipp). A path like oxp, which goes through the ring, can
be altered, without crossing any vortex-line, into the

form orsr-'p, in which it is made up of a path oiTp outside

the ring, and a path rsr

linked with the ring. Hence
the circulation along oxp is

made up of the circulations

along these two paths, or it

is (op) + G. A path such as

oyp, which is twice linked

with the ring, may be altered

into a path going outside the

ring together with two such

closed paths as rsr', and conse-

quently the circulation along
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it is (op) + 2C. And generally, the circulation along a
path which is m times linked with the ring, the same
way round as rsr, will be (op) +mC. If it is linked with

the ring by going the other way round it, the circulation

will be {op) — mC.

Thus the circulation from o to p has not, as in the

case of irrotational motion, a single definite value inde-

pendent of the path pursued, but an infinite number of

values included in the formula (op) + niG, where m is an
integer number positive or negative. We may still speak
of the velocity-potential at jo, but it is now a many-valued
function of the position p. We may compare it with the

angle which has a given tangent ; if ^ be one value of

the angle, there is an infinite number of other values,

included in the formula 6 + wtt, where m is an integer

positive or negative.

If there are any number of vortex-rings, and the circu-

lations round paths linked once with them are respectively

Cj6^2---> then the circulation along a path from o to p
linked m^ times with the first, m.^ times with the second,

etc., is (op) + mfi^ + mfi^ +...

In such cases we may still find equipotential surfaces.

The equipotential surfaces through a point p contains

all those points q which can be got at troai ^> by a path
along which the circulation is zero. Then the system
of values of the velocity-potential at p is the same as the

system of values of the velocity-potential at q.

Every equipotential surface meets every section of each

vortex-filament, and breaks off there. Tims if there is

only one vortex-filament, the equi-

potential surfaces partially consist of

caps, covering the contour of the

ring, as indicated in this figure. They
must of course break oif at the sur-

face of the filament, because there is

no velocity-potential inside the re-

gion where the motion is rotationaj. We say they par-
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tidily consist of such caps, because some of them may be
in separate portions. When there are two or more vortex-

rings, they may be joined by equi-

potential surfaces, as in this figure
;

or an equipotential surface may
consist of caps covering different

rings, together with detached closed

portions. The proof of this pro-

position is very simple. Consider any section of a vortex-

filament, and a point p on the boundary of the section.

Choosing a single value P of the velocity-potential at

p, let this vary continuously as p moves round the
boundary of the section. Then it will gradually increase

from P to P+ C, where C is the circulation round the
filament. Consequently every possible value of the ve-

locity-potential will be represented on the boundary, and
therefore every equipotential surface will meet it.

We may restore a one-valued velocity-potential by
drawing caps to cover all the vortex-rings, and then
defining the potential at p to be the circulation from o

to p along a path which does not cross any of these caps.

The caps are then called diaphragms. On the two sides

of a diaphragm covering a vortex-ring the circulation

round whose section is G, the velocity-potential will differ

by G. Thus in crossing the diaphragm we should find

a sudden jump in the velocity-potential. When a vortex-

ring has two ends in the surface of the fluid, we must
join these ends by any line in the surface, and then draw
a cap covering the contour thus formed.

EXPANSION.

In general, the volume occupied by a finite portion of

the moving body will increase or diminish in consequence

of its motion. We proceed now to find, in the case of a

homogeneous strain-flux, the rate of increase of a unit of

volume of the body.
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For the unit of volume we take tlie cube, three of
whose sides are i, j, k. Let ol,

om, on be unit lengths measured
on the axes oX, oY, oZ. Then
we shall have

velocity of Z = t^i = ai + hj 4- g'k^

„ m =
(f)J
= h'i+ bj+ fk,

„ n=(f>k= gi +f'j+ ck.

And in consequence of these

velocities the cube olmn will

change itself into a parallel-

epiped whose sides will be the new positions of ol, om, on.

Now considering first the motion of I, we see that the

volume of the cube will not be altered by any component
of velocity parallel to the plane omn ; because parallel-

epipeds standing on the same base and between parallel

planes are of equal volume. Hence the only part of the

motion of I which can produce change of volume is the

component of its velocity parallel to ol, which is a. And
it is clear that the rate of change of volume due to this

motion is precisely the velocity of I along ol, since the area

omn is unity. Similarly the rate of change of volume
due to the motion of ni is b, and that due to the motion
of n is c. As these three changes take place simultane-

ously, the whole rate of change of the volume is a + b + c.

Volume is poured into the cube, as it were, through three

faces of it, and so the whole change of volume is the sum
of the changes due to the three faces. The quantity

a + b + c is called the expansion.

If we consider any other volume, containing V units,

the rate of increase of that volume will be V {a + b+ c).

When the strain-flux is not homogeneous, we must
divide the volume of the fluid into very small parts, one
of which shall be called 8V. Throughout this part the

strain-flux is approximately homogeneous, and the ex-

pansion is dji + dyV + d^w, if the velocity a- = ui + vj + ivk.

Hence the rate of increase of 8V is approximately

{d^u + dyV + dgW) 8 V, and consequently the rate of increase

of the whole volume considered is S [dji + d^v + d^w) 8 V,
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with an approximation which is closer the smaller the

parts B V are taken. Hence this rate of increase is exactly

equal to the integral / {d^u + dyV + d^w) d V, since this also

is represented by the same sum with an approximation

which is closer the smaller the parts S V are taken.

We shall write E for the quantity d^u + 9„v + d^w, so

that the rate of increase of a volume V is jEdV. Of
course, if the expansion ^ is a negative quantity at any
point, the volume of the moving body is diminishing at

that point.

From the value just found for the expansion it follows

that if two velocity-systems are compounded together, the

expansion at any point in the resultant system is the sum
of the expansions at that point in the component systems.

The rate of increase of a finite volume of the fluid may
also be calculated in another way. Consider a portion Bx

of the surface of that finite volume, so small that it may
be regarded as approximately flat. Then if the fluid is

flowing out of the volume at that part, there will be a rate

of increase of volume equal to the magnitude of Boc. multi-

plied by the component of the velocity a perpendicular to

it ; that is, equal to — SaBoc. And this will be negative if

the fluid is flowing into the volume. The whole rate of

change of the volume will be the sum of the rates of

change due to all the small parts of the surface, and is

therefore equal to the integral —JSadcc. Hence we have

-JSadoL=JEdV,

or, the surface-integral of the velocity is equal to the volume-

integral of the expansion.

The scaler quantity E is derived from the vector a,

= ui + vj + wk, by the equation E= d^u + dyV + d,w. If any
vector be distributed over space so as to vary continuously

from point to point, like a; we might in the same way
deduce a scalar quantity E from it. Prof. Clerk Maxwell
calls the quantity — E the convergence of o-. We might
perhaps therefore call E itself the divergence of a. In
this language we have proved that the surface-integral of

C. 14
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any vector is equal to the volume-integral of its diver-

gence.

We have seen that the surface-integral of the spin

over any closed surface is zero ; the theorem just proved

shews therefore that the volume-integral of its divergence

over any region is zero. Since the region may be taken

as small as we like, it follows that the spin has no divei'-

gence anywhere. We may in fact easily verify that if

2p = dyW — d^v,

2q = d^u — dj.w,

2r = dj) — 9jM,

then d^p + d^q + d^r = 0.

CASE OF NO EXPANSION.

The motion of the fluid is in the direction in which
the velocity-potential increases. Hence if the velocity-

potential is a minimum at any point, i.e. if it increases in

all directions as we move away from the point, the motion
is away from the point in all directions, and therefore

there is positive exjaansion. Similarly, if the velocity-

potential is a maximum at any point, so that it increases

in all directions as we go towards the point, then the

motion is towards the point in all directions, and there is

compression, or negative expansion.

If there is no expansion, positive or negative, within
the region bounded by a closed surface, the greatest and
least values of the velocity-potential in that region must
be on the surface. For since there is no expansion,

there cannot be a maximum or minimum value inside the

region.

If therefore the velocity-potential is constant all over

the surface, it must be constant throughout the enclosed

region, since the greatest and least values of it are now
equal. In particular, if it is zero all over the surface, it

must be zero throughout the enclosed region.
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Suppose that the value of the velocity-potential is

given at every point of a closed surface, and that there is

no expansion and no spin anywhere inside the enclosed
region. Then we can prove that only one velocity-system

(or only one distribution of velocity-potential) is possible

within the region. It is not proved as yet that any
motion is possible with the given distribution of potential

over the surface, and with no expansion and no spin inside

;

but we can shew that there cannot be two such motions.

For suppose that P is a velocity-potential having the
given value at the surface of the region, and such that it

gives rise to no expansion anywhere inside. Let also Q
be a velocity-potential, satisfying the same conditions.

Then P — Q is a velocity-potential having the value zero

all over the surface, and giving rise to no expansion inside.

Therefore P— Q is zero throughout the enclosed region, or

Q is the same velocity-potential as P.

If the velocity <r at any point has the components
u, V, w, so that <r = ui-\- vj + wk, then we know that

u = d^P, v = dyP, w = d^P. Moreover the expansion E is

equal to d^u + d^v + d^w, and therefore to

a,.a,p+a,.a,p+a,.a,p,

or, as it is conveniently written, (9/ + df + 9/) P. We
have therefore proved that there can be only one solution

of this problem : given the value of a function P all over

a closed surface, to find its value at all points of the in-

cluded region so that it may satisfy the condition

(9.'' + 9/ + 8/)P=0.

"We have not proved that there is any solution of the

problem. That it should be applicable to the motion we
have considered it is clearly necessary that P should vary

continuously from point to point of the closed surface.

We may now extend this theorem. Instead of sup-

posing that there is no spin and no expansion within the

region, let us suppose the spin (confined to separate vortex-

rings) and the expansion to be known at every point

throughout the region ; and let us consider the problem,

having given the value of the velocity-potential at evei7

14—2
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point of the surface, and the expansion and spin at every

point of the enclosed region, to find the motion inside the

region. We can prove, as before, that there is only one

solution of it.

For let <T be the velocity at any point satisfying the

conditions of the problem ; and let also r be a velocity satis-

fying the same conditions. Then a — t will be a velocity

giving no expansion and no spin within the given region,

and a constant value to the velocity-potential all over the

boundary. Hence the motion, whose velocity-system con-

sists of the velocity cr — r at every point, is one in which
the velocity-potential is constant throughout the region

;

that is, it is no motion at all. Hence o- = r everywhere,

or the velocity-system o- is identical with the velocity-

system T.

Suppose now that the closed surface expands in-

definitely in all directions, and that the velocity-potential

is zero for all points on it. Then we arrive at this con-

clusion : when the expansion and the spin are given at

every point of space, and when the velocity-potential (and,

therefore, also the velocity) approaches to the limiting

value zero as we go away to an infinite distance in all

directions, there is only one velocity-system possible. We
shall now proceed to find this velocity-system, from the

given expansion and spin, by describing certain ideal

motions, out of which all continuous velocity-systems may
be built up.

SQUIETS.

Suppose that the lines of flow are straight lines

diverging from a fixed point, so that the fluid is every-

where streaming away from this point ; that there is no
spin anywhere, and no expansion except at the fixed point.

We propose to investigate this state of motion.

Because there is no spin anywhere, there is a velocity-

potential P, and the equipOtential surfaces cut the lines

of flow at right angles. Since the lines of flow are

straight lines passing through a fixed point s, the equi-

potential surfaces must be spheres having that point for
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centre. If we take two of these very near to one another,
the normal distance between them is everywhere the
same ; but we have shewn that the velocity, at different

points of an equipotential surface, is inversely propor-
tional to the normal distance of a contiguous surface.

Hence it follows that the velocities are equal at equal dis-

tancesfrom s.

The tubes of flow are cones having s for vertex. Let
sac be such a cone, and let it be cut at ah and cd by
spheres having their centres at s.

The figure sab is similar to the _^ —
-^

A
figure scd ; hence the areas ah and s"""""^^ ^ \J

cd are to one another as sd^ to 5C*.

The area ah divided by sa^ is called the solid angle of the
cone at s. It is a spherical measure of the solid angle,

just as the arc of a concentric circle, divided by the radius

of that circle, is the circular measure of a plane angle.

Now the rate of increase of the volume abdc is equal

to the surface-integral of the velocity over its boundary.

This boundary consists partly of the side of the cone and
partly of the spherical ends ah and cd. The side of the

cone can contribute nothing to the surface-integral, be-

cause at every point of it the direction of the velocity

is in the surface, and consequently there is no com-
ponent normal to the surface. The spherical surface ah,

being everywhere perpendicular to the velocity, which is

constant all over it, supplies a portion of the surface-

integral, which is simply the product of the area ah by
the velocity at any point of it, say a. Similarly the sur-

face-integral due to cd is the product of the area cd by the

reversed velocity at c. But since there is no expansion,

these two must be equal and opposite in sign ; therefore

velocity at a x area ab = velocity at c x area cd ; or, which
is the same thing,

velocity at a x sa^ = velocity at c x sc*.

Or, we may say that the rate at which the fluid flows

across ah, is the area ab multiplied by the velocity at a,

and that if there is no expansion, the fluid must flow across

cd at the same rate.
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We learn tlius, tliat in the motion considered, the

velocity is inversely as the square of the distance from s.

Let V be the magnitude of the velocity at distance r, then

vr^ is a constant, which we shall call /i. The circulation

aloDff a straiciht line sab from a to & is then

~.dr= -^
,

r sa so

and hence if we make the velocity-potential zero at an

infinite distance its value at distance r will be — - .

r

The rate of increase of any sphere of radius r, having
its centre at s, is equal to the velocity at any point of its

surface multiplied by the whole surface of the sphere.

Now the surface of a sphere is 47rr*, and therefore the

rate of increase is 47rr^v, which is ^tt/jl. We should have
expected this to be a constant, because there is no expan-

sion in the space between two such spherical surfaces.

At the point s itself, the velocity-potential, the velocit}^

and the expansion, are all infinite, and we have no means
of conceiving such a state of motion. To avoid this, we may
imagine a very small sphere to be drawn round the point

s, and the motion inside of this sphere to be replaced by a

homogeneous strain-flux with the point s at rest, and the

same velocity as in the original motion at all points on
the surface of this sphere. The velocity will then vary

continuously, and the motion will be conceivable at every

point. Let E be the expansion of the homogeneous strain-

flux, V the volume of the small sphere, then EV= 47r/t.

The point s is called a source of strength fi when the

fluid streams out in all directions ; when /x is negative, so

that the fluid streams inwards, it is called a sink. The
whole velocity-system here described may be called a
squirt.

WHIRLS.

Suppose next that the lines of flow are circles having
their centres on a fixed axis, and their planes perpen-
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dicular to It, and that there is no spin except at the axis,

and no expansion anywhere. Then the equipotential sur-

faces must be planes passing through the axis, and the

velocity, being inversely proportional to the distance be-

tween two contiguous equipotential surfaces, must, for

points on the same plane, be inversely proportional to the

perpendicular distance from the axis. The condition that

there shall be no expansion requires the velocity to be
constant all round a circular line of flow. If the velocity

at distance r from the axis be X : r, where A, is a constant,

the circulation round any line of flow will be the length

of it, 27rr, multiplied by the velocity A, : r ; that is, it will

be 27rX. The motion at the axis is inconceivable, as the

velocity and the spin are infinite ; but we may avoid this

difficulty by drawing a ver}'- small cylinder round the axis,

and supposing this to rotate about the axis as a rigid

body, so that the points on its surface have the same
velocity as in the original motion. This cylinder may
then be regarded as an infinitely long straight vortex-

filament, the circulation round any section of which is 27rX.

If we suppose a region of space to be marked out by a

surface like the surface of a ring, and the axis to pass

through the hole of this ring, but not into the region

itself; then there will be no spin at any part of the

region, and yet the fluid will flow continually round it.

This explains how it is possible for fluid to flow con-

tinually round a re-entering channel, without ever having

any motion of rotation. It is then possible to draw a

closed curve within the region, which cannot be shrunk
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lip into a point without passing out of the region. "When-
ever this is the case, it does not follow from there being
no spin within the region, that the circulation round such
a curve is zero ; for it may, as in this case, embrace a
vortex line lying outside of the region.

VORTICES.

We shall next investigate the motion in which there
is no spin except at a certain closed curve, and in which
the velocity-potential is proportional to the solid angle
subtended by this closed curve
at any point. By this we mean
that from a point p lines are

to be drawn to all points of

the contour, forming a cone,

and that this cone is to be cut

by a sphere having its centre

at p. The area which the cone
marks off on the sphere, divided

by the radius of the sphere, is

the solid angle fl subtended at

p by the contour. Then the velocity-potential at p is v£l

where v is constant.

If we move the point p round the path pqr, the solid

angle will diminish until it vanishes at some position near

q. K we suppose a straight line passing through p> to

generate the cone, by moving round the contour in a
definite direction, indicated by the arrows, the area on
the spherical surface will be gone round in a definite way,
by the intersection of the sphere with this moving line.

We must then suppose the area on the left of the tracing

point to be positive, and that on the right negative,

p. 8. After the solid angle has acquired the value zero

at q, it will change sign ; and if we move our point on to

r, the spherical area inside the cone must be reckoned
negative. If we move on from r to p, passing through
the contour, the area inside the cone at r will change con-

tinuously into the area outside the cone at p ; and this is

to be reckoned negative. Hence by going round a closed
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path which embraces the contour, we have continuously

changed the solid angle fl into II — 47r. Hence the

velocity-potential has by the same closed path been
diminished by 47rr, because it is changed from i/fl to

v(fl — 47r). It follows that the circulation round any
path which embraces the contour is 4:7rp, if the path go
round in the direction rqpr.

If therefore we consider a piece of the contour so

short as to be approximately straight, the motion in its

immediate neighbourhood will be like that round the axis

of a^ whirl for which X, = 2u. As in that case, we may
draw a small tubular surface enclosing the contour, and
substitute for the actual motion inside of it that of a
small vortex-filament; so that any small length of this

filament rotates like a cylinder about its axis. In this

way we may make the velocity vary continuously, yet so

that the motion is everywhere conceivable.

If we suppose the contour to be covered by a cap, and
that the area of this cap is divided into a number of small

areas, then the solid angle subtended by the contour at

any point is the sum of the solid angles subtended at that

point by all the small areas. Consequently the velocity-

system just described, which may be called a vortex, is the

resultant of a number of smaller vortices, whose vortex-

lines are small closed curves which may be regarded as

approximately plane. We shall now, therefore, examine
more closely the case of such a small plane closed curve.

Take a point a within the area, and draw cue perpen-

dicular to its plane. Let the angle ccap = 0, and the mag-
nitude of the area = -<4. If we draw a
sphere with centre p and radius pa, the

area marked off on it by a cone with vertex

p standing on A will be A cos 6 nearly.

For if the area is small, the portion of the

sphere cut by the cone may be regarded as

approximately plane, and the generating

lines of the cone are approximately parallel,

so that the spherical area is very nearly an orthogonal

projection of J.. Hence the solid angle subtended at ^ is
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nearly equal to A cos $ : r", if r = ap. Consequently the

potential at p is vA cos 6 : r^ approximately.

Now we can produce the same potential in another

way. Let us put at 6 a source of strength /i, and at a a

sink of the same strength ; then the potential at p due to

this combination is

a u ap — hp he cos ,

7 = A'
-^—r^ = H'

—
It
—

>
nearly.

op ap ap.bp 7^ "^

Hence if we make vA=fi. be, and then let the area A and
the length hs diminish continually, increasing v and fi so as

to keep vA, = /j, .hc, = Jc,a finite quantity, both the vortex

and the combination of a positive and negative squirt will

continually approximate to the motion in which the ve-

locity-potential is k cos : r^. Now the source-and-sink

combination gives no expansion except at a and b ; con-

sequently the limiting motion gives no expansion except

at a. But we have seen that every vortex may be made
up of component-vortices, whose vortex-rings are as small

as we like. Hence these two conclusions :

—

1. There is no expansion anywhere due to a vortex.

2. A vortex is equivalent to a system of squirts con-

structed in this way. Let two caps be drawn covering the

vortex-ring, so as to be everywhere at a very small distance

from each other. Let one of them be continuously covered

with sources and the other with sinks, so that the source

and sink on any normal are equal in strength, and so also

that if fiSA be the total strength of the sources on the

small piece of area BA, and t the thickness of the shell at

that part, the product /nt is constant all over the shell and
equal to v the constant of the vortex. Then, keeping all

these conditions satisfied, this system of squirts will the

more nearly approximate to the vortex the more nearly we
make the two caps approach one another. For if we di-

vide the cap into small areas, we have already seen that

this is true of all the vortices whose vortex-rings are the

boundaries of those areas.

Such a system of squirts is called a double shell. In-

side the shell itself the velocity is not that due to the
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vortex, but is very large and in the contrary direction,

namely, from the source to the sink. In crossing the shell

the velocity potential is changed by 4!7n/.

VELOCITY IN TERMS OF EXPANSION AND SPIN.

We are now able to resolve the velocity-system of an
infinite mass of fluid, having no velocity-potential at in-

finity, into squirts and vortices.

Let Ea be the expansion at a point a. Suppose the
entire volume divided into small portions, of which BV^
is the one including the point a. Place at the point a a
source whose strength is E„BV„ : 4<7r. Then the rate of

increase of BV„, due to this source, is -E'aSF^. And the
velocity-potential at a point p, due to this source, is

— EJB Va '• ^Trrap, where r„p means the distance between a
and p.

•If a similar source be placed at some point inside

each of the small pieces 8 V into which the volume is

divided, the velocity-potential due to all of them will be
EBV— S -r—-

. And if we indefinitely diminish the size and

increase the number of the BV„, this quantity will ap-

proximate to the integral —
|

."- ".

The meaning of the integral, however, requires ex-

amination. It supposes that every point where there is

expansion is a source, so that in a region where the

expansion is constant, the sources will be uniformly dis-

tributed. The strength of the source at each point must
be zero, since the aggregate strength of all the sources in

a portion of the volume is the rate of increase of that

portion of the volume, which is finite. We have therefore

to form the conception of a continuous distribution of

source over a volume, so that the aggregate strength is a
finite quantity, and yet there is a source at every included

point. If, for example, sources are uniformly distributed

in the interior of a sphere, the effect will be a homogeneous
strain-flux, consisting of a uniform expansion of the sphere

;
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SO that the velocity relative to the centre is proportional

to the distance from it. When the distribution is variable,

the rate of distribution at any point is what would be the

aggregate strength of a unit of volume in which the dis-

tribution was uniformly what it actually is at that point.

If S is the rate of source-distribution at any point, E the

expansion at that point, then E=4iirS. For the rate of

increase of a sphere of unit volume is 47r x the aggregate

strength of the sources within it.

We have given, then, a velocity-system in which the

expansion at any point a is E^, and the velocity-potential

is zero at an infinite distance. We construct the system

whose velocity-potential at a point ^ is ~ / -^—-
; and we

shew that this system also has expansion E^ at every point

a (for only the sources in the immediate neighbourhood
of a point can produce expansion at the point), and its

velocity-potential is obviously zero at an infinite distance.

If therefore in the given system there is no spin, the
given and the constructed systems are identical ; for if we
subtract one from the other, we get a system in which
there is no spin, no expansion (for the expansions in the

two systems are everywhere the same), and no velocity-

potential at infinity. And this, we have already proved,

means no motion at all.

Next, let there be spin in the given system, and let

Up be the solid angle which a certain vortex-line subtends
at p. Let a very small curve of area BA be drawn em-
bracing the vortex-line, and let tu be the spin at that

part ; then 2a)BA will be the circulation round this curve.

Let 2(i}SA = hk; then a motion whose velocity-potential at

p is —5— will have no expansion anywhere and no spin

except at the vortex-ring. If we suppose the spin to be
confined to isolated vortex-filaments, we may draw a sur-

face across each filament, divide this surface into small

areas 8A, and draw a vortex-ring through some point in
n ?)!•

each one of these small areas. The sum 2-,'' " will
47r
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cn dh
approximate to the integral jf- if we indefinitely in-

crease the number and diminish the size of the areas 8A.
But this integral expresses a continuous distribution of

vortex-lines throughout the filament. If we suppose
straight vortex-lines to be uniformly distributed parallel

to the axis in a circular cylinder, the motion relative to

the axis will be i-otation of the cylinder as a rigid body
about it. If then in the middle of the vortex-filament we
draw a very small vortex-filament of circular section, so

that a short piece of it may be regarded as a circular

section, the motion of this small filament will be com-
pounded of two motions. First, an irrotational motion,

whose velocity-potential is I
-~—

-
, calculated from all the

rest of the vortex-filament. Secondly, a rotation as of a
rigid cylinder about the axis with the spin &>,

Let us now suppose the integral Jilpdk : 47r to be
extended over all vortex-filaments ; whereby we may also

admit the possibility that these vortex-filaments continu-

ously fill the whole of space. Then a motion constructed

so as to have this for its velocity-potential, and in places

where there is spin to be determined as just described, will

have everywhere no expansion and a spin equal to that of

the given motion.

If therefore we have given a motion in which ^^ is the
expansion at any point a, and Xl^ the solid angle subtended
at j9 by a vortex-line, while the velocity-potential is zero

at infinity, and if we construct a motion having the ve-

locity-potential — I -^—-^ + 1 -^—" , the two motions will

be identical. For if we subtract one from the other, we
shall get a motion in which there is no spin, no expansion,

and no potential at infinity ; that is, no motion at all.

Thus we have shewn that if the expansion and the
spin are known at every point, the whole motion may be
determined. And the result is, that every continuous

motion of an infinite body can he built up of squirts and
vortices.
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